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Previous lecture

 Introduction to pipeline basics

• General principles of pipelining

• Techniques to avoid pipeline stalls due to hazards

• What makes pipelining hard to implement?

• Support of multi-cycle instructions in a pipeline
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A pipelined MIPS data-path
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Pipeline factors
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 Pipelining doesn’t help latency of a single 

instruction

 it helps throughput of the entire workload

 Pipeline rate is limited by the slowest pipeline 

stage

 Multiple instructions are executing 

simultaneously

 Potential speedup = Number of pipe stages

• Unbalanced lengths of pipe stages reduces speedup

• Time to fill pipeline and time to drain reduces speedup

• Hazards reduces speedup
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Summary
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 Pipelining (ILP):

• Speeds up throughput, not latency

• Speedup ≤ #stages

 Hazards limit performance, generate stalls:

• Structural: need more HW

• Data (RAW,WAR,WAW): need forwarding and compiler scheduling

• Control: delayed branch, branch prediction

 Complications:

• Precise exceptions may be difficult to implement
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Multi-cycle instruction in pipeline (FP)
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FP Instruction Latency Initiation Rate 

Add, Subtract 3 1

Multiply 6 1

Divide 24 25
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Parallelism between integer and FP
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Instructions are issued in order

Instructions may be completed out of order
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Pipeline hazard
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Structural hazards

RAW hazards

WAW harzards

WAR hazards
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Pipeline hazard

10

Structural hazards. Stall in ID stage if:

• The functional unit is occupied (applicable to DIV only)

• Any instruction already executing will reach the MEM/WB stage at the 

same time as this one

RAW hazards:

• Normal bypassing from MEM and WB stages

• Stall in ID stage if any of the source operands is destination operand in 

any of the FP functional units
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Pipeline hazard
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WAR hazards?

• There are no WAR-hazards since the operands are read (in ID) before 

the EX-stages in the pipeline

WAW hazard

• SUB finishes before DIV which will overwrite the result from SUB!

• Are eliminated by stalling SUB until DIV reaches MEM stage

• When WAW hazard is a problem?
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The MIPS R4000
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 R4000 - MIPS64:

• First (1992) true 64-bit architecture (addresses and data)

• Clock frequency (1997): 100 MHz-250 MHz

• Medium deep 8 stage pipeline (super-pipelined)

Instruction memory Reg Data memory Reg

IF IS RF EX DF DS TC WB

A
L

U
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The MIPS R4000
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 8 Stage Pipeline:

• IF – first half of fetching of instruction;  PC selection happens here as  

well as initiation of instruction cache access

• IS – second half of access to instruction cache

• RF – instruction decode and register fetch, hazard checking and also 

instruction cache hit detection

• EX – execution, which includes effective address calculation, ALU 

operation, and branch target computation and condition evaluation

• DF – data fetch, first half of access to data cache

• DS – second half of access to data cache

• TC – tag check, determine whether the data cache access hit

• WB – write back for loads and register-register operations
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Modern CPU architecture – Intel Atom
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Deeper pipeline
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 Implications of deeper pipeline

• load latency: 2 cycles

• branch latency: 3 cycles (incl. one delay slot) ⇒ High demands on 

the compiler

• Bypassing (forwarding) from more stages

• More instructions “in flight” in pipeline

• Faster clock, larger latencies, more stalls

 Performance equation: CPI ∗ Tc must be lower for the 

longer pipeline to make it worthwhile

Win or loose?

Time   =   Instructions Cycles    Time
Program         Program *  Instruction   *  Cycle



Lund University / EITF20/ Liang Liu 2016

Load penalties
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2 stalls even with forwarding
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Load penalties
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 3 load pipeline stages

• Data is available after the DS stage (second stage in ’Data memory’) 

⇒ latency 2 clock cycles

• Four bypasses (EX/DF/DS/TC) instead of two (EX/MEM) because of 

the two extra pipe stages to read from memory
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Branch penalties
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 Handle branch hazard

• 3 branch delay slot (comparing to simple MIPS)

• Predict-Not taken scheme squashes the next two sequentially 

fetched instructions if the branch is taken (given on delay slot)
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Branch penalties (predict not taken)
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R4000 performance
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R4000 performance
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 R4000 performance

• The penalty for control hazards is very high for integer programs

• The penalty for FP data hazards is also high

• The higher clock frequency compensates for the higher CPI
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Instruction level parallelism (ILP)
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 ILP: Overlap execution of unrelated instructions: 

Pipelining

 Two main approaches to increasing the amount of 

parallelism among instructions:

• DYNAMIC ⇒ hardware detects parallelism (Desktop)

• STATIC ⇒ software detects parallelism (Embedded)

• Often a mix between both

 Pipeline CPI = Ideal CPI + Structural stalls + Data 

hazard stalls + Control stalls
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Instruction level parallelism (ILP)
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 These instructions are independent and could be 

executed in parallel

MIPS program has 15-25% average branch frequency:

• 5 sequential instructions / branch

• These 5 instructions may depend on each other

• Must look beyond a single basic block to get more ILP

 Loop level parallelism 
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Loop-level parallelism
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 There is very little available parallelism within an iteration

 However, there is parallelism between loop iterations; 

each iteration is independent of the other

Potential speed up = 1000!
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MIPS code for the loop
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Only consider data hazard
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Loop showing stalls
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How can we get rid of these 

stalls?
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Reconstructed loop
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 Swap DADDUI and SD by changing offset in SD

 7 clock cycles per iteration

 Sophisticated compiler analysis required

Can we do better?
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Unroll loop four times
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 14 + 4*(1+2) + 1 = 27 clock cycles, or 6.75 per iteration
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Scheduled unrolled loop
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 14 clock cycles, or 3.5 per iteration

Can we unroll more?

 Code size

 Avaliable registers
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Dynamic branch prediction
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 Branches limit performance because:

• Branch penalties

• Limit to available Instruction Level Parallelism

 Delayed braches becomes insufficient for deeper 

pipeline

 Dynamic branch prediction to predict the outcome of 

conditional branches

 Benefits:

• Reduce the time to when the branch condition is known (if we can 

predict correctly)

• Reduce the time to calculate the branch target address (if we can 

buffer the target address)
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Branch history table
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 Simple branch prediction

• The branch-prediction buffer is indexed by low order part of branch-

instruction address (at ID stage)

• The bit corresponding to a branch indicates whether the branch is 

predicted as taken or not

• When prediction is wrong: invert bit

Is one bit good enough?
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A 2-bit branch predictor
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 2-bit branch prediction with saturating counter

• Requires prediction to miss twice in order to change prediction ⇒
better performance

• 1%-18% miss prediction frequency for SPEC89

Can we do it faster (target address)?



Lund University / EITF20/ Liang Liu 2016

Branch target buffer
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 Observation: Target address remains the same for a 

conditional direct branch across dynamic instances

• Idea: Store the target address from previous instance and access it 

with the PC (at IF stage)

• Called Branch Target Buffer (BTB) or Branch Target Address Cache

 Three steps to be predicted at fetch stage:

• Whether the fetched instruction is a branch (somewhat ID)

• (Conditional) branch direction (only store the predicted-taken 

braches)

• Branch target address (if taken)
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Branch target buffer
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Branch target buffer algorithms
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Branch prediction penalties
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 For branch target buffer scheme
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Dependencies
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 Two instructions must be independent in order to 

execute in parallel

 There are three general types of dependencies that 

limit parallelism:

• Data dependencies (RAW)

• Name dependencies (WAR,WAW)

• Control dependencies

 Dependencies are properties of the program

Whether a dependency leads to a hazard or not is a 

property of the pipeline implementation
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Data dependencies
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 An instruction j is data dependent on instruction i if:

• Instruction i produces a result used by instr. j, or

• Instruction j is data dependent on instruction k and instr. k is data 

dependent on instr. i

• Easy to detect for registers
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Name dependencies
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 Two instructions use same name (register or memory 

address) but do not exchange data

• Anti-dependence (WAR if hazard in HW)

• Output dependence (WAW if hazard in HW)
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Control dependencies
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 Determines order between an instruction and a branch 

instruction

• We cannot move an instruction that is dependent on a branch before 

the branch instruction

• We cannot move an instruction not control dependent on a branch 

after the branch instruction
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Instruction scheduling
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 Instruction scheduling

• Scheduling is the process that determines when to start

a particular instruction, when to read its operands, and 

when to write its result,

• Target of scheduling: rearrange instructions to reduce 

stalls when data or control dependencies are present

 Static (compiler at compile-time) scheduling:

• Pro: May look into future; no HW support needed

• Con: Cannot detect all dependencies, esp. across 

branches; hardware dependent

 Dynamic (hardware at run-time) scheduling:

• Pro: works when cannot know dependence at compile 

time; makes the compiler simpler; code for one 

implementation runs well on another

• Con: Cannot look into the future (practically); HW support 

needed which complicates the pipeline hardware
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Dynamic instruction scheduling
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 Key idea: allow instructions behind stall to proceed

MULTD is not data dependent on anything in the pipeline

 Enables out-of-order execution ⇒ out-of-order 

completion

 ID stage checks for structural and data dependencies

• Scoreboard (CDC 6600 in 1963)

• Tomasulo (IBM 360/91 in 1967)
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Scoreboard pipeline
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 Goal of score-boarding is to maintain an execution rate of 

CPI=1 by executing an instruction as early as possible

 Instructions execute out-of-order when there are sufficient 

resources and no data dependencies

 A scoreboard is a hardware unit that keeps track of 

• the instructions that are in the process of being executed

• the functional units that are doing the executing

• and the registers that will hold the results of those units

 A scoreboard centrally performs all hazard detection and 

instruction control
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CDC 6000, Seymour Cray, 1963
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Main features

• Ten functional units 

• Scoreboard for dynamic scheduling of instructions 

• Very fast clock, 10 MHz (FP add in 4 clocks)

• >400,000 transistors,  750 sq. ft., 5 tons, 150 kW, 

• 3MIPS, fastest machine in world for 5 years (until CDC7600)

• over 100 sold ($6-10M each)
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CDC 6000 Seymour Cray, 1963
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Thomas Watson Jr., IBM CEO, August 1963:
“Last week, Control Data ... announced the 6600 
system. I understand that in the laboratory 
developing the system there are only 34 people 
including the janitor. Of these, 14 are engineers and 4 
are programmers... Contrasting this modest effort 
with our vast development activities, I fail to 
understand why we have lost our industry leadership 
position by letting someone else offer the world's 
most powerful computer.”

To which Cray replied: “It seems like Mr. Watson has 
answered his own question.”
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Scoreboard pipeline
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 Issue: decode and check for structural & WAW hazards

 Read operands: wait until no data hazards, then read operands

 All data hazards are handled by the scoreboard
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Scoreboard complications
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 Solutions for WAR:

• Stall instruction in the Write stage until all previously issued 

instructions (with a WAR hazard) have read their operands

 Solution for WAW:

• Stall in Issue until other instruction completes

 RAW hazards handled in Read Operands

 Scoreboard keeps track of dependencies and state of 

operations

Out-of-order execution

⇒ WAR & WAW hazards
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Scoreboard functionality
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 Issue: An instruction is issued if:

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of 

the instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution

• Notify the scoreboard when ready

Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR 

hazards)
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Scoreboard components
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 Instruction status: keeps track of which of the 4 steps the 

instruction is in

 Functional unit status: Indicates the state of the functional 

unit (FU). 9 fields for each FU:

• Busy: Indicates whether the unit is busy or not

• Op: Operation to perform in the unit (e.g. add or sub)

• Fi: Destination register name

• Fj, Fk: Source register names

• Qj, Qk: Name of functional unit producing regs Fj, Fk

• Rj, Rk: Flags indicating when Fj and Fk are ready

 Register result status: Indicates which functional unit will 

write each register, if any
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Scoreboard example
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Detailed scoreboard control
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Read 
operands

Execution 
complete

Instruction 
status

Write result

Issue

Bookkeeping

Rj No; Rk No

f(if Qj(f)=FU then Rj(f) Yes);
f(if Qk(f)=FU then Rj(f) Yes); 

Result(Fi(FU)) 0; Busy(FU) No

Busy(FU) yes; Op(FU) op; 
Fi(FU) `D’; Fj(FU) `S1’; 

Fk(FU) `S2’; Qj Result(‘S1’); 
Qk Result(`S2’);  Rj not Qj; 
Rk not Qk; Result(‘D’) FU;

Rj and Rk

Functional unit 
done

Wait until

f((Fj( f )≠Fi(FU) 
or Rj( f )=No) & 

(Fk( f ) ≠Fi(FU) or 
Rk( f )=No))

Not busy (FU) 
and not result(D)
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Scoreboard example, CP1

59



Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP2
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Scoreboard example, CP3
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Scoreboard example, CP4
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Scoreboard example, CP5
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Scoreboard example, CP6
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Scoreboard example, CP7
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Scoreboard example, CP8
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Scoreboard example, CP9
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Scoreboard example, CP11
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Scoreboard example, CP12
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Scoreboard example, CP13
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Scoreboard example, CP16
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Scoreboard example, CP17
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Scoreboard example, CP20
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Scoreboard example, CP21
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Scoreboard example, CP22
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Scoreboard example, CP62
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Factors that limits performance
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The scoreboard technique is limited by:

 The amount of parallelism available in code

 The number of scoreboard entries (window size)

• A large window can look ahead across more instructions

 The number and types of functional units

• Contention for functional units leads to structural hazards

 The presence of anti-dependencies and output 

dependencies

• These lead to WAR and WAW hazards that are handled by stalling

the instruction in the Scoreboard

 Number of data-paths to registers


