
Lund University / EITF20/ Liang Liu 2016

EITF20: Computer Architecture
Part3.1.1: Pipeline - 2

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Case Study: MIPS R4000

 Instruction Level Parallelism

 Branch Prediction

 Dependencies

 Instruction Scheduling

 Scoreboard

2

Lund University / EITF20/ Liang Liu 2016

Previous lecture

 Introduction to pipeline basics

• General principles of pipelining

• Techniques to avoid pipeline stalls due to hazards

• What makes pipelining hard to implement?

• Support of multi-cycle instructions in a pipeline

3

Lund University / EITF20/ Liang Liu 2016

A pipelined MIPS data-path

4

Lund University / EITF20/ Liang Liu 2016

Pipeline factors

5

 Pipelining doesn’t help latency of a single

instruction

 it helps throughput of the entire workload

 Pipeline rate is limited by the slowest pipeline

stage

 Multiple instructions are executing

simultaneously

 Potential speedup = Number of pipe stages

• Unbalanced lengths of pipe stages reduces speedup

• Time to fill pipeline and time to drain reduces speedup

• Hazards reduces speedup

Lund University / EITF20/ Liang Liu 2016

Summary

6

 Pipelining (ILP):

• Speeds up throughput, not latency

• Speedup ≤ #stages

 Hazards limit performance, generate stalls:

• Structural: need more HW

• Data (RAW,WAR,WAW): need forwarding and compiler scheduling

• Control: delayed branch, branch prediction

 Complications:

• Precise exceptions may be difficult to implement

Lund University / EITF20/ Liang Liu 2016

Multi-cycle instruction in pipeline (FP)

7

FP Instruction Latency Initiation Rate

Add, Subtract 3 1

Multiply 6 1

Divide 24 25

Lund University / EITF20/ Liang Liu 2016

Parallelism between integer and FP

8

Instructions are issued in order

Instructions may be completed out of order

Lund University / EITF20/ Liang Liu 2016

Pipeline hazard

9

Structural hazards

RAW hazards

WAW harzards

WAR hazards

Lund University / EITF20/ Liang Liu 2016

Pipeline hazard

10

Structural hazards. Stall in ID stage if:

• The functional unit is occupied (applicable to DIV only)

• Any instruction already executing will reach the MEM/WB stage at the

same time as this one

RAW hazards:

• Normal bypassing from MEM and WB stages

• Stall in ID stage if any of the source operands is destination operand in

any of the FP functional units

Lund University / EITF20/ Liang Liu 2016

Pipeline hazard

11

WAR hazards?

• There are no WAR-hazards since the operands are read (in ID) before

the EX-stages in the pipeline

WAW hazard

• SUB finishes before DIV which will overwrite the result from SUB!

• Are eliminated by stalling SUB until DIV reaches MEM stage

• When WAW hazard is a problem?

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Case Study: MIPS R4000

 Instruction Level Parallelism

 Branch Prediction

 Dependencies

 Instruction Scheduling

 Scoreboard

12

Lund University / EITF20/ Liang Liu 2016

The MIPS R4000

13

 R4000 - MIPS64:

• First (1992) true 64-bit architecture (addresses and data)

• Clock frequency (1997): 100 MHz-250 MHz

• Medium deep 8 stage pipeline (super-pipelined)

Instruction memory Reg Data memory Reg

IF IS RF EX DF DS TC WB

A
L

U

Lund University / EITF20/ Liang Liu 2016

The MIPS R4000

14

 8 Stage Pipeline:

• IF – first half of fetching of instruction; PC selection happens here as

well as initiation of instruction cache access

• IS – second half of access to instruction cache

• RF – instruction decode and register fetch, hazard checking and also

instruction cache hit detection

• EX – execution, which includes effective address calculation, ALU

operation, and branch target computation and condition evaluation

• DF – data fetch, first half of access to data cache

• DS – second half of access to data cache

• TC – tag check, determine whether the data cache access hit

• WB – write back for loads and register-register operations

Lund University / EITF20/ Liang Liu 2016

Modern CPU architecture – Intel Atom

15

Lund University / EITF20/ Liang Liu 2016

Deeper pipeline

16

 Implications of deeper pipeline

• load latency: 2 cycles

• branch latency: 3 cycles (incl. one delay slot) ⇒ High demands on

the compiler

• Bypassing (forwarding) from more stages

• More instructions “in flight” in pipeline

• Faster clock, larger latencies, more stalls

 Performance equation: CPI ∗ Tc must be lower for the

longer pipeline to make it worthwhile

Win or loose?

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

Lund University / EITF20/ Liang Liu 2016

Load penalties

17

2 stalls even with forwarding

Lund University / EITF20/ Liang Liu 2016

Load penalties

18

 3 load pipeline stages

• Data is available after the DS stage (second stage in ’Data memory’)

⇒ latency 2 clock cycles

• Four bypasses (EX/DF/DS/TC) instead of two (EX/MEM) because of

the two extra pipe stages to read from memory

Lund University / EITF20/ Liang Liu 2016

Branch penalties

19

 Handle branch hazard

• 3 branch delay slot (comparing to simple MIPS)

• Predict-Not taken scheme squashes the next two sequentially

fetched instructions if the branch is taken (given on delay slot)

Lund University / EITF20/ Liang Liu 2016

Branch penalties (predict not taken)

20

Lund University / EITF20/ Liang Liu 2016

R4000 performance

21

Lund University / EITF20/ Liang Liu 2016

R4000 performance

22

 R4000 performance

• The penalty for control hazards is very high for integer programs

• The penalty for FP data hazards is also high

• The higher clock frequency compensates for the higher CPI

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Case Study: MIPS R4000

 Instruction Level Parallelism

 Branch Prediction

 Dependencies

 Instruction Scheduling

 Scoreboard

23

Lund University / EITF20/ Liang Liu 2016

Instruction level parallelism (ILP)

24

 ILP: Overlap execution of unrelated instructions:

Pipelining

 Two main approaches to increasing the amount of

parallelism among instructions:

• DYNAMIC ⇒ hardware detects parallelism (Desktop)

• STATIC ⇒ software detects parallelism (Embedded)

• Often a mix between both

 Pipeline CPI = Ideal CPI + Structural stalls + Data

hazard stalls + Control stalls

Lund University / EITF20/ Liang Liu 2016

Instruction level parallelism (ILP)

25

 These instructions are independent and could be

executed in parallel

MIPS program has 15-25% average branch frequency:

• 5 sequential instructions / branch

• These 5 instructions may depend on each other

• Must look beyond a single basic block to get more ILP

 Loop level parallelism

Lund University / EITF20/ Liang Liu 2016

Loop-level parallelism

26

 There is very little available parallelism within an iteration

 However, there is parallelism between loop iterations;

each iteration is independent of the other

Potential speed up = 1000!

Lund University / EITF20/ Liang Liu 2016

MIPS code for the loop

27

Only consider data hazard

Lund University / EITF20/ Liang Liu 2016

Loop showing stalls

28

How can we get rid of these

stalls?

Lund University / EITF20/ Liang Liu 2016

Reconstructed loop

29

 Swap DADDUI and SD by changing offset in SD

 7 clock cycles per iteration

 Sophisticated compiler analysis required

Can we do better?

Lund University / EITF20/ Liang Liu 2016

Unroll loop four times

30

 14 + 4*(1+2) + 1 = 27 clock cycles, or 6.75 per iteration

Lund University / EITF20/ Liang Liu 2016

Scheduled unrolled loop

31

 14 clock cycles, or 3.5 per iteration

Can we unroll more?

 Code size

 Avaliable registers

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Case Study: MIPS R4000

 Instruction Level Parallelism

 Branch Prediction

 Dependencies

 Instruction Scheduling

 Scoreboard

32

Lund University / EITF20/ Liang Liu 2016

Dynamic branch prediction

33

 Branches limit performance because:

• Branch penalties

• Limit to available Instruction Level Parallelism

 Delayed braches becomes insufficient for deeper

pipeline

 Dynamic branch prediction to predict the outcome of

conditional branches

 Benefits:

• Reduce the time to when the branch condition is known (if we can

predict correctly)

• Reduce the time to calculate the branch target address (if we can

buffer the target address)

Lund University / EITF20/ Liang Liu 2016

Branch history table

34

 Simple branch prediction

• The branch-prediction buffer is indexed by low order part of branch-

instruction address (at ID stage)

• The bit corresponding to a branch indicates whether the branch is

predicted as taken or not

• When prediction is wrong: invert bit

Is one bit good enough?

Lund University / EITF20/ Liang Liu 2016

A 2-bit branch predictor

35

 2-bit branch prediction with saturating counter

• Requires prediction to miss twice in order to change prediction ⇒
better performance

• 1%-18% miss prediction frequency for SPEC89

Can we do it faster (target address)?

Lund University / EITF20/ Liang Liu 2016

Branch target buffer

36

 Observation: Target address remains the same for a

conditional direct branch across dynamic instances

• Idea: Store the target address from previous instance and access it

with the PC (at IF stage)

• Called Branch Target Buffer (BTB) or Branch Target Address Cache

 Three steps to be predicted at fetch stage:

• Whether the fetched instruction is a branch (somewhat ID)

• (Conditional) branch direction (only store the predicted-taken

braches)

• Branch target address (if taken)

Lund University / EITF20/ Liang Liu 2016

Branch target buffer

37

Lund University / EITF20/ Liang Liu 2016

Branch target buffer algorithms

38

Lund University / EITF20/ Liang Liu 2016

Branch prediction penalties

39

 For branch target buffer scheme

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Case Study: MIPS R4000

 Instruction Level Parallelism

 Branch Prediction

 Dependencies

 Instruction Scheduling

 Scoreboard

40

Lund University / EITF20/ Liang Liu 2016

Dependencies

41

 Two instructions must be independent in order to

execute in parallel

 There are three general types of dependencies that

limit parallelism:

• Data dependencies (RAW)

• Name dependencies (WAR,WAW)

• Control dependencies

 Dependencies are properties of the program

Whether a dependency leads to a hazard or not is a

property of the pipeline implementation

Lund University / EITF20/ Liang Liu 2016

Data dependencies

42

 An instruction j is data dependent on instruction i if:

• Instruction i produces a result used by instr. j, or

• Instruction j is data dependent on instruction k and instr. k is data

dependent on instr. i

• Easy to detect for registers

Lund University / EITF20/ Liang Liu 2016

Name dependencies

43

 Two instructions use same name (register or memory

address) but do not exchange data

• Anti-dependence (WAR if hazard in HW)

• Output dependence (WAW if hazard in HW)

Lund University / EITF20/ Liang Liu 2016

Control dependencies

44

 Determines order between an instruction and a branch

instruction

• We cannot move an instruction that is dependent on a branch before

the branch instruction

• We cannot move an instruction not control dependent on a branch

after the branch instruction

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Case Study: MIPS R4000

 Instruction Level Parallelism

 Branch Prediction

 Dependencies

 Instruction Scheduling

 Scoreboard

45

Lund University / EITF20/ Liang Liu 2016

Instruction scheduling

46

 Instruction scheduling

• Scheduling is the process that determines when to start

a particular instruction, when to read its operands, and

when to write its result,

• Target of scheduling: rearrange instructions to reduce

stalls when data or control dependencies are present

 Static (compiler at compile-time) scheduling:

• Pro: May look into future; no HW support needed

• Con: Cannot detect all dependencies, esp. across

branches; hardware dependent

 Dynamic (hardware at run-time) scheduling:

• Pro: works when cannot know dependence at compile

time; makes the compiler simpler; code for one

implementation runs well on another

• Con: Cannot look into the future (practically); HW support

needed which complicates the pipeline hardware

Lund University / EITF20/ Liang Liu 2016

Dynamic instruction scheduling

48

 Key idea: allow instructions behind stall to proceed

MULTD is not data dependent on anything in the pipeline

 Enables out-of-order execution ⇒ out-of-order

completion

 ID stage checks for structural and data dependencies

• Scoreboard (CDC 6600 in 1963)

• Tomasulo (IBM 360/91 in 1967)

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Case Study: MIPS R4000

 Instruction Level Parallelism

 Branch Prediction

 Dependencies

 Instruction Scheduling

 Scoreboard

49

Lund University / EITF20/ Liang Liu 2016

Scoreboard pipeline

50

 Goal of score-boarding is to maintain an execution rate of

CPI=1 by executing an instruction as early as possible

 Instructions execute out-of-order when there are sufficient

resources and no data dependencies

 A scoreboard is a hardware unit that keeps track of

• the instructions that are in the process of being executed

• the functional units that are doing the executing

• and the registers that will hold the results of those units

 A scoreboard centrally performs all hazard detection and

instruction control

Lund University / EITF20/ Liang Liu 2016

CDC 6000, Seymour Cray, 1963

51

Main features

• Ten functional units

• Scoreboard for dynamic scheduling of instructions

• Very fast clock, 10 MHz (FP add in 4 clocks)

• >400,000 transistors, 750 sq. ft., 5 tons, 150 kW,

• 3MIPS, fastest machine in world for 5 years (until CDC7600)

• over 100 sold ($6-10M each)

Lund University / EITF20/ Liang Liu 2016

CDC 6000 Seymour Cray, 1963

52

Thomas Watson Jr., IBM CEO, August 1963:
“Last week, Control Data ... announced the 6600
system. I understand that in the laboratory
developing the system there are only 34 people
including the janitor. Of these, 14 are engineers and 4
are programmers... Contrasting this modest effort
with our vast development activities, I fail to
understand why we have lost our industry leadership
position by letting someone else offer the world's
most powerful computer.”

To which Cray replied: “It seems like Mr. Watson has
answered his own question.”

Lund University / EITF20/ Liang Liu 2016

Scoreboard pipeline

53

 Issue: decode and check for structural & WAW hazards

 Read operands: wait until no data hazards, then read operands

 All data hazards are handled by the scoreboard

Lund University / EITF20/ Liang Liu 2016

Scoreboard complications

54

 Solutions for WAR:

• Stall instruction in the Write stage until all previously issued

instructions (with a WAR hazard) have read their operands

 Solution for WAW:

• Stall in Issue until other instruction completes

 RAW hazards handled in Read Operands

 Scoreboard keeps track of dependencies and state of

operations

Out-of-order execution

⇒ WAR & WAW hazards

Lund University / EITF20/ Liang Liu 2016

Scoreboard functionality

55

 Issue: An instruction is issued if:

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of

the instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution

• Notify the scoreboard when ready

Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR

hazards)

Lund University / EITF20/ Liang Liu 2016

Scoreboard components

56

 Instruction status: keeps track of which of the 4 steps the

instruction is in

 Functional unit status: Indicates the state of the functional

unit (FU). 9 fields for each FU:

• Busy: Indicates whether the unit is busy or not

• Op: Operation to perform in the unit (e.g. add or sub)

• Fi: Destination register name

• Fj, Fk: Source register names

• Qj, Qk: Name of functional unit producing regs Fj, Fk

• Rj, Rk: Flags indicating when Fj and Fk are ready

 Register result status: Indicates which functional unit will

write each register, if any

Lund University / EITF20/ Liang Liu 2016

Scoreboard example

57

Lund University / EITF20/ Liang Liu 2016

Detailed scoreboard control

58

Read
operands

Execution
complete

Instruction
status

Write result

Issue

Bookkeeping

Rj No; Rk No

f(if Qj(f)=FU then Rj(f) Yes);
f(if Qk(f)=FU then Rj(f) Yes);

Result(Fi(FU)) 0; Busy(FU) No

Busy(FU) yes; Op(FU) op;
Fi(FU) `D’; Fj(FU) `S1’;

Fk(FU) `S2’; Qj Result(‘S1’);
Qk Result(`S2’); Rj not Qj;
Rk not Qk; Result(‘D’) FU;

Rj and Rk

Functional unit
done

Wait until

f((Fj(f)≠Fi(FU)
or Rj(f)=No) &

(Fk(f) ≠Fi(FU) or
Rk(f)=No))

Not busy (FU)
and not result(D)

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP1

59

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP2

60

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP3

61

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP4

62

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP5

63

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP6

64

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP7

65

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP8

66

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP9

67

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP11

68

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP12

69

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP13

70

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP16

71

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP17

72

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP20

73

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP21

74

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP22

75

Lund University / EITF20/ Liang Liu 2016

Scoreboard example, CP62

76

Lund University / EITF20/ Liang Liu 2016

Factors that limits performance

77

The scoreboard technique is limited by:

 The amount of parallelism available in code

 The number of scoreboard entries (window size)

• A large window can look ahead across more instructions

 The number and types of functional units

• Contention for functional units leads to structural hazards

 The presence of anti-dependencies and output

dependencies

• These lead to WAR and WAW hazards that are handled by stalling

the instruction in the Scoreboard

 Number of data-paths to registers

