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Previous lecture

 Instruction set architecture
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Instruction set principles

 Classification of instruction sets

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

 Encoding

 The impact of the compiler

 The MIPS instruction set architecture
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ISA Classes
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ISA and compiler

6

Instruction set architecture is a compiler target

By far most instructions executed are generated by a 

compiler (exception certain special purpose processors)

interaction compiler - ISA critical for overall performance

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
Architecture
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The MIPS64 architecture

7

 An architecture representative of modern ISA:

• 64 bit load/store GPR architecture

• 32 general integer registers (R0 = 0) and 32 floating point registers

• Supported data types: bytes, half word (16 bits), word (32 bits), 

double word (64 bits), single/double precision IEEE floating points

• Memory byte addressable with 64 bit addresses

• Addressing modes: immediate and displacement
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MIPS instructions

8

MIPS instructions classes:

• Arithmetic/logical/shift/comparison

• Control instructions (branch and jump)

• Load/store

• Other (exception, register movement to/from GP registers, 

etc.)
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MIPS instruction example
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MIPS instruction format

10



Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Pipelining

 Harzards

• Structural hazards

• Data hazards

• Control hazards

 Implementation issues

Multi-cycle operations

 Summary

11



Lund University / EITF20/ Liang Liu 2016

Two basic digital components

F

Combinational 

Logic

a

b

c

z

Always: 

z <= F(a, b, c); 

Register

D Q

clk

if clk’event and clk=‘1’ then

Q <= D;

Propagation delay:

After presenting new inputs

Worst case delay before 

producing correct output

Rising 

clock edge
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Clock Frequency (RTL)

What is the maximum clock frequency?

Reg

clk

& &

&
Reg

clk

Register

Setup time: Tsu                200ps

Hold time:                    Th 100ps

AND-gate

Propagation delay:      Tprop       250ps

13

250×3+200=0.95ns

f=1.05GHz
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The Assembly Line ...
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Start again from laundry room

Small laundry has one washer, one dryer and one folder, it 

takes 110 minutes to finish one load:

•Washer takes 40 minutes

•Dryer takes 50 minutes

•“Folding” takes 20 minutes

Need to do 4 laundries

The general pipeline principle

15
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Not very smart way...
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Total = N*(Washer+ Dryer+Folder)

= ___________ mins440
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If we pipelining

Time

40 50 50 50 50 20

L
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n
d

rie
s

1

2

3

4

Total = Washer+N*Max(Washer,Dryer,Folder)+Folder

= ___________ mins260

The washer 

waits for the 

dryer for 10 

minutes
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Pipeline Facts

Time

40 50 50 50 50 20
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4

Multiple tasks operating 

simultaneously

Pipelining doesn’t help latency

of single task, it helps 

throughput of entire workload

Pipeline rate limited by 

slowest pipeline stage

Unbalanced lengths of pipe 

stages reduces speedup

Potential speedup ∝ Number 

of pipe stages
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Back to digital systems

Input

F Reg
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H Reg
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MIPS pipeline
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One core – the MIPS data-path

21
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One core – the MIPS data-path
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Classic RISC 5-stage pipeline

23

Instruction Fetch (IF):
• Send out the PC and fetch the instruction from memory into the instruction 

register (IR); increment the PC by 4 to address the next sequential instruction.

• IR holds the instruction that will be used in the next stage.

• NPC holds the value of the next PC (either sequential or jump).

Passed To Next Stage

IR <- Mem[PC]

NPC <- PC + 4
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Classic RISC 5-stage pipeline

24

Instruction Decode/Register Fetch Cycle (ID):
• Decode the instruction and access the register file to read the registers.

• The outputs of the general purpose registers are read into two temporary 

registers (A & B) for use in later clock cycles.

• Extend the sign of the lower 16 bits of the Instruction Register (immediate).

Passed To Next Stage

A <- Regs[IR6..IR10];

B <- Regs[IR10..IR15];

Imm <- ((IR16) ##IR16-31
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Classic RISC 5-stage pipeline

25

Passed To Next Stage

A <- A func. B

cond = 0;

Execute Address Calculation (EX):
• Perform an operation (for an ALU) or an address calculation (if it’s a load/store 

or a Branch).

• If an ALU, actually do the operation.  

• If an address calculation, figure out how to obtain the address
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Classic RISC 5-stage pipeline

26

Passed To Next Stage

A = Mem[prev. B]

or

Mem[prev. B] = A

MEMORY ACCESS (MEM):
• If this is an ALU, do nothing.

• If a load or store, then access memory.
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Classic RISC 5-stage pipeline

27

Passed To Next Stage

Regs <- A, B;

WRITE BACK (WB):
• Update the registers (GPR) from either the ALU or from the data loaded.



Lund University / EITF20/ Liang Liu 2016

Power breakdown

28
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Speed up

29

Time   =   Instructions Cycles    Time
Program         Program     *  Instruction   *  Cycle
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Speed up

30

Non-Pipelined
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Speed up (idea case)

31

Consider an un-pipelined processor. Assume: 

• It has a 1 ns clock cycle and it uses 4 cycles for ALU operations and branches 
and 5 cycles for memory operations

• Relative frequencies of these operations are 40%, 20%, and 40%

Pipelined:

• Due to clock skew and setup, pipelining adds 0.2ns of overhead to the clock

The speedup in the instruction execution rate we can gain:

Average instruction execution time
= 1 ns * ((40% + 20%)*4 + 40%*5)
= 4.4ns

Speedup from pipeline
= Average instruction time unpiplined/Average instruction time pipelined
= 4.4ns/1.2ns = 3.7
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Fundamental limitations

33

Hazards can prevent next instruction from executing 

during its designated clock cycle:

• Structural hazards: Simultaneous use of a HW resource

• Data hazards: Data dependencies between instructions

• Control hazards: Change in program flow

A way of solving hazards is to serialize the 

execution by inserting “bubbles” that effectively 

stall the pipeline (interlock).
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Structure hazard

34

When two or more different instructions want to use same hardware

resource in same cycle, e.g., MEM uses the same memory port (only one

memory port)

Time (clock cycles)
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A simple solution

35

Time (clock cycles)

Load
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Reg
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Other solutions

36

Stall

• low cost, simple 

• Increases CPI  

• use for rare case since stalling has performance effect

Pipeline hardware resource

• useful for multi-cycle resources 

• good performance 

• sometimes complex

Replicate resource

• good performance 

• increases cost (+ maybe interconnect delay) 

• useful for cheap resources 
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Dual/single port memory (65nm)

37

Size Single-port Two-port

64*16 12um2/bit 23um2/bit

256*16 4.6um2/bit 8um2/bit

512*16 4um2/bit 6um2/bit
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Data hazard

38

The use of the result of the ADD instruction in the next 3 instructions 

causes a hazard, since the register is not written until after those 

instructions read it.

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB
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Fundamental types of data hazard

39

RAW (Read-After-Write)

• Instruction i + 1 reads A and i modifies A 

• Instruction i+1 reads old A!

WAR (Write-After-Read) 

• Instruction i + 1 modifies A and instruction i reads new A

WAW (Write-After-Write) 

• Instructions i and i + 1 both modifies A

• The value in A is the one written by instruction i

(RAR?)
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Strategies for data hazard

40

Interlock

• Wait for hazard to clear by holding dependent instruction in 

issue stage

Forwarding

• Resolve hazard earlier by bypassing value as soon as 

available

Speculate

• Guess on value, correct if wrong
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Interlock and forwarding

41

add x1, x3, x5

sub x2, x1, x4

F add x1, x3, x5D

F

X

D

F
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Instruction interlocked in 

decode stage

F D X M W add x1, x3, x5

F D X M W sub x2, x1, x4

Bypass around ALU with 

no bubbles
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Hardware support of forwarding

42
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Data hazard with forwarding

43

Required date from MEM
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Data hazard with forwarding

44
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Software scheduling of load

45

Try producing fast code for

a = b + c;

d = e - f;

assuming a, b, c, d, e, and f are 

in memory

LD      R1, B

LD      R2, C

DADD    R3,R1,R2

SD      R3, A

LD      R5, F

LD      R4, E

DSUB    R6,R4,R5

SD      R6, D

How many stalls?

How many stalls with hardware forwarding?

F D

F

X

D

F

W

M

X

F

D

W

X M W

M W

W

M

D

X

M

X

D

F
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Software scheduling of load

46

Try producing fast code for

a = b + c;

d = e - f;

assuming a, b, c, d, e, and f are in memory.

Architecture dependent optimization
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Scheduling vs un-scheduling

47

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled
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Control hazard

48

Control hazard

• Need to find the destination of a branch, and can’t fetch any new 

instructions until we know that destination

Assume: branches are not resolved until the MEM stage

Three wasted clock cycles:

• two stalls

• one extra instruction fetch (IF)

 If branch is not taken, the extra IF not needed
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Hardware support to reduce control hazard

49

Calculate target address and test condition in ID

1 clock cycle branch penalty instead of 3!
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Four control hazard alternatives

50

Stall until branch condition and target is known

Predict branch not taken

• Execute successor instructions in sequence

• “Squash” instructions in pipeline if the branch is actually taken

• Works well if state is updated late in the pipeline (as in MIPS)

• 33 % MIPS conditional branches not taken on average

one cycle penalty if taken
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Four control hazard alternatives

51

Predict Branch taken (benefit in our case?)

• 67 % MIPS conditional branches taken on average

• MIPS calculates target address in ID stage! Still one cycle penalty

Delayed branch

• Define branch to take place after a following instruction

• Slot delay allows proper decision and branch target address 

calculation in a 5 stage pipeline such as MIPS
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Compiler support for delay branch

52

Scheduling “from before” is always safe (if independent)

Scheduling “from target” or “fall through” is not always safe
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Pipeline speed up

53
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What’s hard to implement

55

Exceptions (fault, interrupt)
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Exceptions

56

When an interrupt occurs:

• How to stop the pipeline?

• How to restart the pipeline?

• Who caused the interrupt? 

A pipeline implements precise exceptions if:

• All instructions before the faulting instruction can complete

• All instructions after (and including) the faulting instruction can 

safely be restarted

PC
Inst. 
Mem D Decode E M

Data 
Mem W+

Illegal 
Opcode

Overflow
Data address 
Exceptions

PC address 
Exception
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Exceptions are difficult in pipeline

57

We need to be able to restart an instruction that 

causes an exception:

• Force a trap instruction (e.g., some special routine call to 

handle the exception) into the pipeline

• Turn off all writes for the faulting instruction

• Save the PC for the faulting instruction to be used in return 

from exception handling

• If delayed branch is used we may need to save several PC’s
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Solution for simple MIPS

58

Need to add control and datapaths to support exceptions and 

interrupts. 

When an exception or interrupt occurs, the following must be 

done:

• EPC <= PC

• Cause <= (cause code for event)

• Status <= (fault)

• PC <= (handler address)

To return from an exception or datapath, the following must 

be done:

• PC <= EPC

• Status <= (fault clear)
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Exceptions are difficult in pipeline

59

Exceptions may be generated out-of-(program) order
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Solution for simple MIPS

60

Add a hardware status vector containing exceptions

Pass along with instruction in the pipeline

• Hold exception flags in pipeline until commit point (M stage)

• Exceptions in earlier pipe stages override later exceptions for a given 

instruction

Turn of writes when an exception entered in the status vector

Handle exceptions from status vector in WB (in program order)

• If exception at commit: update Cause and EPC registers, kill all stages, 

inject handler PC into fetch stage

• Inject external interrupts at commit point (override others)

Handle at commit point NOT 

at exception point
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Solution for simple MIPS

61

PC
Inst. 
Mem D Decode E M

Data 
Mem W+

Illegal 
Opcode

Overflow Data address 
Exceptions

PC address 
Exception
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Multi-cycle instruction in pipeline (FP)

63

FP Instruction Latency Initiation Rate 

Add, Subtract 3 1

Multiply 6 1

Divide 24 25
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Parallelism between integer and FP

64

Instructions are issued in order

Instructions may be completed out of order
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Pipeline hazard

65

Structural hazards

RAW hazards

WAW harzards

WAR hazards
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Pipeline hazard

66

Structural hazards. Stall in ID stage if:

• The functional unit is occupied (applicable to DIV only)

• Any instruction already executing will reach the MEM/WB stage at the 

same time as this one

RAW hazards:

• Normal bypassing from MEM and WB stages

• Stall in ID stage if any of the source operands is destination operand in 

any of the FP functional units
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Pipeline hazard

67

WAR hazards?

• There are no WAR-hazards since the operands are read (in ID) before 

the EX-stages in the pipeline

WAW hazard

• SUB finishes before DIV which will overwrite the result from SUB!

• are eliminated by stalling SUB until DIV reaches MEM stage

• When WAW hazard is a problem?



Lund University / EITF20/ Liang Liu 2016

Summary

68

 Pipelining (ILP):

• Speeds up throughput, not latency

• Speedup ≤ #stages

 Hazards limit performance, generate stalls:

• Structural: need more HW

• Data (RAW,WAR,WAW): need forwarding and compiler scheduling

• Control: delayed branch, branch prediction

 Complications:

• Precise exceptions may be difficult to implement


