
1

Lessons from the ARM
Architecture

Richard Grisenthwaite
Lead Architect and Fellow

ARM

2

ARM Processor Applications

3

Overview
Introduction to the ARM architecture

Definition of “Architecture”
History & evolution
Key points of the basic architecture

Examples of ARM implementations
Something to the micro-architects interested

My Lessons on Architecture design
…or what I wish I’d known 15 years ago

4

Definition of “Architecture”
The Architecture is the contract between the Hardware and the Software

Confers rights and responsibilities to both the Hardware and the Software
MUCH more than just the instruction set

The architecture distinguishes between:
Architected behaviors:

Must be obeyed
May be just the limits of behavior rather than specific behaviors

Implementation specific behaviors – that expose the micro-architecture
Certain areas are declared implementation specific. E.g.:

Power-down
Cache and TLB Lockdown
Details of the Performance Monitors

Code obeying the architected behaviors is portable across implementations
Reliance on implementation specific behaviors gives no such guarantee

Architecture is different from Micro-architecture
What vs How

5

History
ARM has quite a lot of history

First ARM core (ARM1) ran code in April 1985…
3 stage pipeline very simple RISC-style processor

Original processor was designed for the Acorn Microcomputer
Replacing a 6502-based design

ARM Ltd formed in 1990 as an “Intellectual Property” company
Taking the 3 stage pipeline as the main building block

This 3 stage pipeline evolved into the ARM7TDMI
Still the mainstay of ARM’s volume
Code compatibility with ARM7TDMI remains very important

Especially at the applications level

The ARM architecture has features which derive from ARM1
Strong “applications level” compatibility focus in the ARM products

6

Evolution of the ARM Architecture
Original ARM architecture:

32-bit RISC architecture focussed on core instruction set
16 Registers - 1 being the Program counter – generally accessible
Conditional execution on all instructions
Load/Store Multiple operations - Good for Code Density
Shifts available on data processing and address generation
Original architecture had 26-bit address space

Augmented by a 32-bit address space early in the evolution

Thumb instruction set was the next big step
ARMv4T architecture (ARM7TDMI)
Introduced a 16-bit instruction set alongside the 32-bit instruction set

Different execution states for different instruction sets
Switching ISA as part of a branch or exception
Not a full instruction set – ARM still essential

ARMv4 architecture was still focused on the Core instruction set only

7

Evolution of the Architecture (2)
ARMv5TEJ (ARM926EJ-S) introduced:

Better interworking between ARM and Thumb
Bottom bit of the address used to determine the ISA

DSP-focussed additional instructions
Jazelle-DBX for Java byte code interpretation in hardware
Some architecting of the virtual memory system

ARMv6K (ARM1136JF-S) introduced:
Media processing – SIMD within the integer datapath
Enhanced exception handling
Overhaul of the memory system architecture to be fully architected

Supported only 1 level of cache

ARMv7 rolled in a number of substantive changes:
Thumb-2* - variable length instruction set
TrustZone*
Jazelle-RCT
Neon

8

Extensions to ARMv7
MPE – Multiprocessing Extensions

Added Cache and TLB Maintenance Broadcast for efficient MP

VE - Virtualization Extensions
Adds hardware support for virtualization:

2 stages of translation in the memory system
New mode and privilege level for holding an Hypervisor

With associated traps on many system relevant instructions
Support for interrupt virtualization

Combines with a System MMU

LPAE – Large Physical Address Extensions
Adds ability to address up to 40-bits of physical address space

9

VFP – ARM’s Floating-point solution
VFP – “Vector Floating-point”

Vector functionality has been deprecated in favour of Neon
Described as a “coprocessor”

Originally a tightly-coupled coprocessor
Executed instructions from ARM instruction stream via dedicated
interface

Now more tightly integrated into the CPU
Single and Double precision floating-point

Fully IEEE compliant
Until VFPv3, implementations required support code for denorms

Alternative Flush to Zero handling of denorms also supported
Recent VFP versions:

VFPv3 – adding more DP registers (32 DP registers)
VFPv4 – adds Fused MAC and Half-precision support (IEEE754-2008)

10

ARM Architecture versions and products
Key architecture revisions and products:

ARMv1-ARMv3: largely lost in the mists of time
ARMv4T: ARM7TDMI – first Thumb processor
ARMv5TEJ(+VFPv2): ARM926EJ-S
ARMv6K(+VFPv2): ARM1136JF-S, ARM1176JFZ-S,

ARM11MPCore – first Multiprocessing Core
ARMv7-A+VFPv3 Cortex-A8
ARMv7-A+MPE+VFPv3: Cortex-A5, Cortex-A9
ARMv7-A+MPE+VE+LPAE+VFPv4

Cortex-A15

ARMv7-R : Cortex-R4, Cortex-R5
ARMv6-M Cortex–M0
ARMv7-M: Cortex-M3, Cortex-M4

11

ARMv7TDMI
Simple 3 stage pipeline

Fetch, Decode, Execute
Multiple cycles in execute stage
for Loads/Stores

Simple core
“Roll your own memory system”

12

Instruction
Fetch

FETCH DECODE EXECUTE MEMORY WRITEBACK

ARM926EJ-S
5 stage pipeline single issue core

Fetch, Decode, Execute, Memory, Writeback
Most common instructions take 1 cycle in each pipeline stage

Split Instruction/Data Level1 caches Virtually tagged
MMU – hardware page table walk based

Java Decode
Stack

Management

Register
Write

Java Decode
Register

Read

Sum/Accumulate
& Saturation

Memory Access

Compute
Partial Products

Shift + ALU

Thumb Decode

ARM Decode

Register
Decode

Register
Decode

Register
Read

Register
Read

Instruction
Stream

13

ARM1176JZF-S
8 stage pipeline single issue

Split Instruction/Data Level1 caches Physically tagged
Two cycle memory latency

MMU – hardware page table walk based
Hardware branch prediction

ALU and MAC PipelineI-Cache Access
+

Dynamic
Branch Prediction

PF1 PF2
Decode

+
StaticB

P
RStack

DE
Instr
Issue

+
Regist

er
Read

ISS SH ALU SAT
WB
ex

MAC1 MAC2 MAC3

LSU Pipeline
LS
add DC1 DC2 WB

LS

14

Cortex-A8
Dual Issue, in-order

10 stage pipeline (+ Neon Engine)

2 levels of cache – L1 I/D split, L2 unified
Aggressive Branch Prediction

NEON

Load and store
data queue

NEON
Instruction

Decode

Instruction Execute and Load/Store

E1 E3 E4 M1E2 M2 M3 N1 N6N2 N3 N4 N5E5

LS pipe 0 or 1

 Instruction
Fetch

F1 F2F0 D1 D2 D3 D4

Instruction Decode

L3 memory system

BIU pipeline

L2 Data ArrayL2 Tag Array
L1 L2 L3 L4 L5 L6 L8

L1 data cache miss
L1 instruction cache miss

Branch mispredict penalty

NEON store data

Integer register writeback
NEON register writeback

Replay penalty

D0 E0

L9L7
Embedded Trace Macrocell

T10T3T0 T4 T5 T6 T7 T8 T9T2T1 T11

M0

T13T12

MUL pipe 0

ALU pipe 0

ALU pipe 0

Integer ALU pipe

Integer MUL pipe

Integer shift pipe

Non-IEEE FP ADD pipe

Non-IEEE FP MUL pipe

IEEE FP engine

LS permute pipe
L2 data

External trace port

L1 data

15

Cortex-A9
Dual Issue, out-of-order core
MP capable – delivered as clusters of 1 to 4 CPUs

MESI based coherency scheme across L1 data caches
Shared L2 cache (PL310)
Integrated interrupt controller

16

2.5Ghz in 28 HP process
12 stage in-order, 3-12 stage OoO pipeline
3.5 DMIPS/Mhz ~ 8750 DMIPS @ 2.5GHz

ARMv7A with 40-bit PA
Dynamic repartitioning Virtualization

Fast state save and restore
Move execution between cores/clusters

128-bit AMBA 4 ACE bus
Supports system coherency

ECC on L1 and L2 caches

2.5Ghz in 28 HP process
12 stage in-order, 3-12 stage OoO pipeline
3.5 DMIPS/Mhz ~ 8750 DMIPS @ 2.5GHz

ARMv7A with 40-bit PA
Dynamic repartitioning Virtualization

Fast state save and restore
Move execution between cores/clusters

128-bit AMBA 4 ACE bus
Supports system coherency

ECC on L1 and L2 caches

Cortex-A15 – Just Announced - Core Detail

Fe
tc

h
Fe

tc
h

D
ec

od
e

D
ec

od
e

R
en

am
e

R
en

am
e

Simple Cluster 0Simple Cluster 0

Simple Cluster 1Simple Cluster 1

Multiply Accumulate Multiply Accumulate

12 Stage In-order pipeline
(Fetch, 3 Instruction
Decode, Rename)

ComplexComplex

ComplexComplex

Load & Store 0Load & Store 0

Load & Store 1Load & Store 1

3-12 Stage
out-of-order

pipeline
(capable of 8

issue)

Eagle Pipeline

64-bit/128bit AMBA4 interface

17

Just some basic lessons from experience
Architecture is part art, part science

There is no one right way to solve any particular problem
….Though there are plenty of wrong ways

Decision involves balancing many different criteria
Some quantitative, some more subjective

Weighting those criteria is inherently subjective
Inevitably architectures have fingerprints of their architects

Hennessy & Patterson quantitative approach is excellent
But it is only a framework for analysis – a great toolkit

Computer science – we experiment using benchmarks/apps
…but the set of benchmarks/killer applications is not constant

Engineering is all about technical compromise, and balancing factors
The art of Good Enough

18

First Lesson – It’s all about Compatibility
Customers absolutely expect compatibility

Customers buy your roadmap, not just your products
The software they write is just expected to work

Trying to obsolete features is a long-term task

Issues from the real world:
Nobody actually really knows what their code uses

…and they’ve often lost the sources/knowledge
People don’t use features as the architect intended

Bright software engineers come up with clever solutions
The clever solutions find inconvenient truths

Compatibility is with what the hardware actually does
Not with how you wanted it to be used
There is a thing called “de facto architecture”

19

Second lesson – orthogonality
Classic computer texts tell you orthogonality is good

Beware false orthogonalities
ARM architecture R15 being the program counter

Orthogonality says you can do lots of wacky things using the PC
On a simple implementation, the apparent orthogonality is cheap

ARM architecture has “shifts with all data processing”
Orthogonality from original ARM1 pipeline
But the behaviour has to be maintained into the future

Not all useful control configurations come in powers of 2

Fear the words “It just falls out of the design”
True for today’s microarchitecture – but what about the next 20 years?
Try to only architect the functionality you think will actually be useful

Avoid less useful functionality that emerges from the micro-architecture

20

Third Lesson – Microarchitecture led features

Few successful architectures started as architectures
Code runs on implementations, not on architectures
People buy implementations, not architectures

…IP licensing notwithstanding

Most architectures have “micro-architecture led features”
“it just fell out”
Optimisations based on first target micro-architecture

MIPS – delayed branch slots
ARM – the PC offset of 2 instructions

Made the first implementation cheaper/easier than the pure approach
…but becomes more expensive on subsequent implementations

Surprisingly difficult trade-off
Short-term/long-term balance

Meeting a real need sustainably vs overburdening early implementations

21

Fourth Lesson: New Features
Successful architectures get pulled by market forces

Success in a particular market adds features for that market
Different points of success pull successively over time
Solutions don’t necessarily fit together perfectly

Unsuccessful architectures don’t get same pressures
…which is probably why they appear so clean!

Be very careful adding new features:
Easy to add, difficult to remove

Especially for user code
“Trap and Emulate” is an illusion of compatibility

Performance differential is too great for most applications

22

Lessons on New Features

If a feature requires a combination of hardware and specific software…
…be afraid – development timescales are different
Be very afraid of language specific features

All new languages appear to be different…
….but very rarely are

New features rarely stay in the application space you expect….
…Or want – architects are depressingly powerless

Customers will exploit whatever they find
So worry about the general applicability of that feature

Assume it has to go everywhere in the roadmap

Avoid solving this years problem in next year’s architecture
... Next year’s problem may be very different
Point solutions often become warts – all architectures have them
If the feature has a shelf-life, plan for obsolence

Example: Jazelle-DBX in the ARM architecture

23

Thoughts on instruction set design
What is the difference between an instruction and a micro-op?

RISC principles said they were the same
Very few PURE RISC architectures exist today
ARM doesn’t pretend to be “hard-core” RISC

…I’ll claim some RISC credentials
Choice of Micro-ops is micro-architecture dependent

An architecture should be micro-architecturally independent
Therefore mapping of instructions to micro-ops is inherently “risky”

Splitting instructions easier than fusing instructions
If an instruction can plausibly be done in one block, might be right to express it

Even if some micro-architectures are forced to split the instruction
But, remember legacy lasts for a very long time

Imagine explaining the instructions in 5 years time
Avoid having instructions that provide 2 ways to do much the same thing

Everyone will ask you which is better - lots of times…
If it feels a bit clunky when you first design it…

…. it won’t improve over time

24

Final point – Architecture is not enough
Not Enough to ensure perfect “write once, run everywhere”

Customers expectations of compatibility go beyond architected behaviour
People don’t write always code to the architecture

…and they certainly can’t easily test it to the architecture
ARM is developing tools to help address this

Architecture Envelope Models – a suite of badly behaved legal implementations
The architecture defines whether they are software bugs or hardware incompatibilities

…allows you to assign blame (and fix the problem consistently)

Beware significant performance anomalies between architectural compliant cores
If I buy a faster core, I want it to go reliably faster…without recompiling

Multi-processing introduce huge scope for functional differences from timing
Especially in badly synchronised code
Concurrency errors

BUT THE ARCHITECTURE IS A STRATEGIC ASSET

25

History – the Passage of Time

26

Microprocessor Forum 1992

27

Count the Architectures (11)

ARM

MIPS
29K

PA

NVAX

N32x16
88xxx

Alpha

x86

i960

SPARC

x86
x86 x86

28

The Survivors – At Most 2

ARM

MIPS

x86

SPARC

29

What Changed?
Some business/market effects
Some simple scale of economy effects
Some technology effects
Adoption and Ecosystem effects

It wasn’t all technology – not all of the disappearing
architectures were bad

Not all survivors are good!
Not all good science succeeds in the market!

Never forget “Good enough”

30

Thank you

Questions

