LUNDS TEKNISKA HÖGSKOLA

Inst. för Elektro- och Informationsteknik
Signal Processing in Multimedia, EITA50, 2017
Task 2 (out of 2)

Deadline: Complete the task before until Tuesday, 31:st of Oct, at 18:00.
Observe: In order to simplify the correction:
-Only solve one problem per paper sheet.
-Please write your name on every paper sheet.
Statements must be motivated by reasoning and/or equations.
The points from the tasks will be added to the examination score.
Max Tot. score (exam +2 tasks $)=5.0+0.5+0.5=6.0$
Grading; 3 ($\geq 3.0 \mathrm{p}$), 4 ($\geq 4.0 \mathrm{p}$), 5 ($\geq 5.0 \mathrm{p}$).

1. The following discrete time signals are given.

$$
x_{1}(n)=\left[\begin{array}{lllll}
-2 & -1 & 0 & -1 & -2
\end{array}\right], x_{2}(n)=\left[\begin{array}{llllll}
-\underset{\uparrow}{1} & 2 & -2 & -1 & 1 & -1 \tag{0.2p}
\end{array}\right]
$$

Determine the following (3 out of 4 correct answers gives full points)
a) The linear convolution between the sequences, i.e. $y(n)=x_{1}(n) * x_{2}(n)$.
b) The circular convolution modulo 4 between the sequences, i.e. $y(n)=x_{1}(n) \circledast_{4} x_{2}(n)$.
c) The linear correlation between the sequences, i.e. $y(n)=x_{1}(n) * x_{2}(-n)$.
d) The circular correlation modulo 5 between the sequences, i.e. $r_{x_{1} x_{2}}(n)=x_{1}(n) \circledast_{5} x_{2}(-n)$.
2. A horse carriage i traveling at $67.9 \mathrm{~km} / \mathrm{h}$ (exactly at $6 \times 3.6 \times \pi \mathrm{km} / \mathrm{h}$) in a direction such that the wheels are rotating counter-clockwise. Every wheel has 8 spokes and a diameter or 1 m . The wheels are recorded with a digital video camera that takes 50 pictures/second. What observed rotational speed (in revolutions per second) will the wheels have by observing the recorded digital sequence? What rotational direction will be observed, clock-wise or counter-clockwise? Also, what horse carriage speed does this rotational speed correspond to?
3. Signals are sampled, down-sampled or up-sampled and reconstructed ideally according to the items below. Determine what the resulting signal will be.
a) The signal $\cos (2 \pi 300 t)$ is sampled using $F_{s}=1000 \mathrm{~Hz}$, down-sampled by a factor 4 (i.e. only every fourth sample value is kept), and then ideally reconstructed with a sample rate of $F_{s}=1000 \mathrm{~Hz}$).
(0.1p)
b) The signal $\cos (2 \pi 2100 t)$ is sampled using $F_{s}=800 \mathrm{~Hz}$, up-sampled by a factor 3 (i.e. after every sample value two zeroes are inserted), and then ideally reconstructed with a sample rate of $F_{s}=600 \mathrm{~Hz}$.

