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Because of the iterative character of the graph structure, 
this transfer function, P(Z), may be related to itself by 
the equation . 

1 
pm = 2. (%-a *W). 1 _ p(z). 

Solving for P(Z), 

P"(Z) - 2P(Z) + Z2‘= 0 

P(Z) = 1 - VC--Z? I. 
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We select the negative sign for the square root because 
only then does the power expansion of P(Z) lack the 
term of zero order (as we see it must, directly from the 
graph). . 

Expanding P(Z) by the binomial formula, we obtain 
the desired return probabilities, p(n). A return is certain 
since P(1) = 1 and the average time to return is 

All random-walk processes which can be analyzed 
readily by other methods can be also treated as linear 
systems problems. It is clear that the success of all 
methods in such problems must rely on an exploitable 
regularity of the system structure. 

Example of Computation of an Average Delay 

The graph of Fig. 9 shows a process which is started 
in state a and continues until absorbed in state e. We wish 
to determine the average time to absorption, that is, the 
average delay from start to finish. But if we apply a unit 

Fig. S-Average delay computation. 

sample to the linear system analog at node a, the total 
signal which flows into each node through all time is just 
the average time spent in making transitions into that 
state in the original process. It is often possible to make a 
stepwise computation of these total signals and thereby 
find by addition the over-all average delay. This method 
circumvents the use of transfer functions in solving the 
problem. 

In our example the total signal arriving at node e is 
just 1. Therefore, since l/2 is the transition multiplier 
from nodes d to .e, a total of 2 must have started out at 
node d. Similarly node b has a total of 1, node c has a total 
of 2(2 -l/2) = 3. Node a has a total of 3, but we must 
subtract 1 from this because we do not attribute any 
delay to the starting of the process by application of the 
unit sample. The over-all average delay is 1 + 2 + 3 + 2 
= 9. The same result could have been obtained with much 

more ,labor by differentiating the node a to node e transfer 
function and setting Z =. 1 in the result. 

A Study of Rough Amplitude Quantization by 
Means of Nyquist Sampling Theory* 

BERNARD WIDROWt 

I N MANY system and signal analysis problems, it is 
’ convenient to work with the probability density 

distributions of signals rather than with the signals 
themselves. Thus, the new “signals” are these probability 
densities, and the results of analyses are stat#istical. 

This approach has been helpful in providing an under- 
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standing of the process of amplitude quantization. 
Quantization or round-off is a nonlinear operation that is 
effected whenever a physical quantity is represented 
numerically. The value of a measurement is designated 
by an integer corresponding to the nearest number of 
units contained in the measured physical quantity. 
Incorporation of such a process within a system makes 
the entire system nonlinear and difficult to deal with by 
any direct analytical procedure. The statistical approach 
greatly reduces complexity by giving average results 
which are very often adequate for system evaluation and 
design. Statistical descriptions of quantization turn out 
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to be fairly easy to get because the quantizer output 
probability density distribution is obtained by a linear 
sampling process upon the input distribution density. 

THE QUANTIZER 

A rounding-off process may be represented symbolically 
as in Fig. 1. For purposes of analysis, it has been found 
convenient to define the quantizer as a nonlinear operator 
having the input-output relation of Fig. 1. Its output X’ 
is a single-valued function of the input X, and it has an 
“average gain” of unity. An input lying somewhere within 
a quantization “box” of width q will yield an output 
corresponding to the center of that box (i.e., the input is 
rounded to the center of the box). More general quantizers 
such as those in Fig. 2 (a) and (b) could be obtained by 
preceeding and following the quantizer of Fig. 1 with 
instantaneous linear amplifiers (multiplying factors) and 
adding dc levels to the quantizer input and outsput 
(tailoring averages). 

OUT PUT 
X’( 
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INPUT- OUTPUT CHARACTERISTICS 

Fig. l-The quantizer; input-output characteristics. 
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Fig. a--More general quantizers. 

A quantizer may be defined to process continuous data 
or sampled data. In this paper, the inputs to quantizers 
will be sampled. Many of the conclusions drawn carry 
over to the quantization of continuous data, however. 

A STATISTICAL DESCRIPTION OF THE QUANTIZATION 
PROCESS 

First-Order Statistics 

If the samples of some continuous variable are random 
and statistically independent of each other, a first-order 
probability density W(X) completely describes this 
process. The characteristic function of W(X) is its Fourier 
transform: 

F,(t) = lrn W(X) eeizE dX. 
--m (1) 

A quantizer input variable may take on a continuum 
of magnitudes, while the output variable can assume only 
discrete states. The probability density of the output 
W’(X’) consists of a series of impulses that are uniformly 
spaced along the amplitude axis, each one centered in a 
quantization box. 

Fig. 3 shows how the output distribution is derived from 
that of the input. Since any event occurring within a 
quantization box is always (‘reported” as at the center of 
that box, each impulse has a magnitude equal to the area 
under the probability density W(X) within the bounds 
of the box. The impulse distribution W’(X’) has a periodic 
characteristic function, being the Fourier transform of a 
series of impulses having uniform spacing CJ. The point of 
view developed by W. K. Linvill for the study of amplitude 
sampling as an amplitude-modulation process with an 
impulse carrier has been found to be most useful in the 
derivation of lV’(X’) and its more general counterparts. 
The necessary aspects of Linvill’s ideas will be developed . 
next. 

/ 
J- ! 

Fig. 3-Area sampling u set 1 in the derivation of W’(X). 

Amplitude Sampling Treated as Line& Impulse Modu- 
lation: The process of periodically sampling a function 
f(t) is the same a.s multiplying it by a series of impulses 
of unit area which are spaced uniformly. The impulse 
carrier of fundamental frequency fi = 27r/T may be 
represented by the Fourier series in (2). 

f*(t) = [f(t)][impulse carrier] = [f(t)][(l/T)] 2 eisR’. (2) 
-co 

It is the sum of an infinite number of sinusoidal carriers 
with uniform frequency spacing D which, when modulated 
by f(t), develop identical “sidebands” about each fre- 
quency nfi. The pattern of these sidebands is the same as 
that of the Fourier transform of f(t). F*(jw), the Fourier 
spectrum of the series of impulses f*(t), is the sum of a 
periodic array of sections, separated by the frequency 
0, where the typical repeated section is the same as 
(l/T) F(jo), the spectrum of the envelope of the pulses. If it 
were possible to separate the zeroth section of F*(jw) 
from the rest, it would be possible to recover an envelope 
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from its samples. This can be done with an “ideal low-pass 
filter” if the sections are distinct and do not overlap. 
The gain as a function of frequency for such a filter 
together with F*(jw) are shown in Fig. 4. If F*(t) is applied 
to the input of the low-pass filter of Fig. 4, the output will 
be f(t). Since the impulse response of the ideal low-pass 
filter is [sin (?rt/T)]/(vrt/T), it follows by linearity that 
the envelope of the impulses is a sum of these, properly 
weighed and spaced in time, as shown in Fig. 5. 

;2 -n/2 
I 

0 rY2 n w 

Fig. 4-Recovery of envelope from samples in the frequency domain. 
I 
I : 

W’(X) 
0(X+@)-0(X-q/2) 

Fig. 5-Recovery of envelope from samples in the time domain 

The low-pass filter is an interpolater that yields f(t) 
as long as f(t) has no significant harmonic content at 
higher frequency than Q/2: This is the Nyquist bandwidth 
restriction on f(t). 

Derivation of the First-Order Probability Density of a 
Quantized Variable: The distribution of a quantizer output 
W’(X’) consists of “area samples” of the input distribution 
density W(X). The quantizer may be thought of as an 
area sampler acting upon the “signal,” the probability 
density W(X). Fig. 6 shows how W’(X’) may be con- 
structed by sampling the difference D(lt + q/2) - 
D(z - 4/2), where D(x) is the distribution, the integral 
of the distribution density. Fig. 7 is a block schematic 
diagram of this process, showing how W(X) is first 
modified by a linear filter of “gain” [sin (q{/2)]/(n E/2) 
and then sampled to give W’(X’). 

When the radian “fineness” 4, 2a times the reciprocal 
of the box width, is twice as high as the radian “frequency” 
of the highest “frequency” component contained in the 
shape of W(X), it is possible to recover W(X) from the 
quant,ized distribution W/(X’) by inverse transforming 
the quotient of a typical section of F,. (g) and [sin ‘(q E/2)]/ 
+I 5/a. 

The characteristic function of the distribution density 
of the sum of two random independent variables’is the 
product of the individual cf’s. Fig. 8 shows the distribution 
Q(n) and its characteristic function. Q(n) will be shown 

Fig. GConstruction of area samples. 

-ADVANCE-BY 412 

‘DELAY’ BY q/Z 

Fig. 7-Block diagram of the area sampling of Fig. 8. 

to be the distribution of quantization noise. Its cf is 
F,(F) = bin (G#~>l/(d+) = [sin (aU4l/kE/2). If 
purely random independent noise of distribution Q(n) 
were added to a signal of distribution W(X), their sum 
would have a cf F,(t) [sin (at/+)]/(a/+), which is identical 
with the typical section of F,, (5). The derivatives of a 
cf at the origin determine moments. It follows that the 
moments of a quantized signal are the same as if the 
quantizer were a source of independent random additive 
noise of distribution Q(n) provided that Nyquist’s re- 
striction on W(X) is met. If the moments of W(X) are 
ml, m,, ..., and the moments of W’(X’) are P,, p2, . * ., 
they may be expressed in terms of each other and-the box 
size 4 as in (3). Advantage is taken of the facts that Q(n) 
has a second moment of l/12 $ and a fourth moment of 
l/80 q4. 
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SIN (lip/+) 
(q/4) ’ 

Fig. S-The distribution of quantieation noise and its characteristic 
function. 

ml - Pl = 0 

m, - pz = -i’$ q 2 

m3 - CL3 = -$4q2 

m4,- i.b = -3d + & q4. 

(3) 

The right-hand sides are the well-known Sheppard 
corrections for grouping. 

It, is now possible to derive W’(X’) from W(X). The 
understanding of the quantizer would be complete if it 
were true that the quantization noise (the difference 
between input and output) were independent, of the 
quantizer input. This is not true, however. Not only’ is 
the quantization noise statistically related to the input, 
but it is also causally related. Since the output of a 
quantizer is a single-valued function of the input, any 
given input yields a definite output and a definite noise. 

The distribution density of the noise itself will be shown 
to be Q(n), independent of the distribution density of the 
quantizer input (as long as the Nyquist restriction is 
satisfied). Their causal tie will show up later when joint 
input-output distribution densities are derived. 

Derivation of the Probability Density of QuantizatiQn 
hToise: Quantization noise is always the difference between 
an input variable and the value of the box to which it has 
been assigned. The distribution of quantization noise 
resulting from events assigned to the zeroth box may be 
constructed by plotting W( -X) between -q/2 < X < 
q/2. Likewise, the noise distribution resulting from 
events in the first box may be obtained by considering 
W( -X) for values -3q/2 < X < -q/2, recentered to 

the origin. Events taking place in the various boxes are 
exclusive of each other. The probability of a given noise 
magnitude arising is the sum of the probabilities of that 
noise from each box. Fig. 9 shows how the distribution of 
quantization noise is constructed from W( -X). 

-q/z w? 

ADD THESE 

Fig. 9-Construction of distribution of quantization noise. 

Since the development of the distribution of quanti- 
eation noise (Fig. 9) is an additive linear process, the 
quantization noise distribution is the sum of the dis- 
tributions of noise corresponding to constituents that are 
added to get W(X). All that needs be considered is the 
quantization of the basic form (sin (rX/q))/(rX/q). The 
strips as in Fig. 9 are added to give the quantization noise 
distribution which turns out to be precisely flat-topped. 

An arbitrary distribution satisfying the Nyquist con- 
dition is the sum of a series of (sin (?rX/q))/(?rX/q)‘s, 
where each gives a flat-topped distribution of quanti- 
zation noise. The sum of ,flat-topped distributions is flat- 
topped. If the distribution density of a signal being 
quantized is W(X), and the quantization grain is fine 
enough to satisfy the Nyquist restriction, the distribution 
of the noise introduced by the quantizer will be flat-topped. 
This distribution is Q(n), shown in Fig. 8. 

Derivation of the Joint Probability Density of the Quantizer 
Input and Output: A most general statistical description 
of a device having a random stationary output is the joint 
distribution between input and output. From this, the 
output distribution, input distribution, the difference 
(between input and output) distribution, and the joint 
distribution between input and difference may be deter- 
mined. Any one of the joint distributions will determine 
all the rest, but at least one joint distribution need be 
known for a complete statistical picture. Infinite numbers. 
of joint distributions could give the same input, output, 
and difference distribution densities, so that the latter 
are not sufficient. for a complete understanding. 

A study of Fig. 10 shows how a joint in-out distribution 
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Fig. IO-Formation of joint in-out distributiog from quantizer imput 
distribution. 

W(X, X’) is derived from a given input distribution 
W(X). The strips of W(X) are placed at the values of X’ 
to which they correspond. Consider next the situation 
shown in Fig. 11. For every value of X, all values of noise 
are possible between &q/2 because the noise is independ- 
,ent of X. The joint distribution (Fig. 12) between X and 
(X + n) shows this, whereas any plane parallel to the 
(X + n) and w axes cuts a flat-topped section from the 
surface of joint probability w(X, X + noise). The surface 
of joint probability is everywhere parallel to the X + n 
.axis. The projection of the surface on the X - w plane 
has the same shape as W(X) and has an area of l/q. The 
total volume under the surface is unity. 

INDEPENDENT NOISE 
OF DISTRIBUTION 

C?(h) 

Fig. 11-Addition of independent quantiaation noise. 

1 w(X,X+n) 

Pig. la-Joint in-out distribution for .a quantiser and for a source of 
additive independent quantization noise. 

A study of Figs. 10 and 12 shows that the strips of Fig. 
10 are sections of the three-dimensional surface of Fig. 
12 (if first multiplied in amplitude by q) cut by a series of 
planes parallel to the W and X axes with spacing 9 along 
the X + n axis. The strips of Fig. 10 are thus the results 
of the amplitude modulation of a periodic carrier, which is 
a series of uniformly-spaced impulse sheets, by an,envelope 
which is the joint probability surface. It should be possible 
to deduce the joint dharacteristic function of the distri- 
bution W(X, X’) from that of w(X, X + n). At the same 
time, the ways in which quantization is akin to the 
addition of random independent noise as in Fig. 11 should 
be detected. 

The methods of amplitude sampling may readily be 
generalized to handle sampling by impulse sheets. Each 
sheet extends to infinity in both directions, and has a unit 
volume per unit length. The Fourier series for the ampli- 
tude sheets Z(X, X’) is 

2(X,X’) = 5 l/q e:inrpZ’. 
n3-m (4) 

Z appears to be one-dimensional, because there is no 
variation with X. If &, is the variable that X transforms 
into, and lb is the variable that X’ transforms into, the 
two-dimensional spectrum of 2(X, X’) is a string of im- 
pulses having the spacing 4 along the & axis. Each impulse 
has the amplitude l/q. When a carrier having this spectrum 
is modulated by an envelope w(X, X + ‘n), the resulting 
spectrum is periodic along fb, and aperiodic along t,. The 
shape of a typical section is the same as the spectrum of 
w(X, X + n). The whole series of sections results from 
the convolution of the two two-dimensional spectra. 
Since the sections of w(X, X + n) are to be first multiplied 
by q, the factor l/q is compensated for and the value of 
F,,,, (&,&) is 1 at the origin. All characterisbic functions 
must have the value 1 at their origins in order that the 
total volume under their probability densities be unity. 

It is of interest to derive the typical section of Fz,9t 
(&, &,), the Fourier transform of w(X, X + n) which is 
the joint distribution between the input and the input 
plus an independent. noise of distribution Q(n) as in Fig. 
11. A joint cf of two variables may be deduced from the 
characteristic functions resulting from sums of various 
proportions of the two variables. A block diagram illus- 
trating this technique is given in Fig. 13. Formally 

= 
ss 

. 
w(X, X + n) ei’x’a+(x+n)‘bl dX d(X + 72) (5) 

-m 

also, 

F,(l) = j w(X, X + n)e’Lk’EX+k’F(X+n)l dX d(X + n). (6) 
-m 
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INDEPENDENT NOISE OF 
DISTRIBUTION Q(h) 

,n 

Fig. la-Flow diagram useful in calculation of F 2, z+n(E., Eb). 

FL:(t) can be readily’ evaluated and leads to F,,, *,, (&,, .&) 
if the substitution is made, k,C; = &, i%,t = .$b. Any to, & 
can be obtained by choice of k,, k,, and .$. The sum Z 
equals (k, + 7c,) X + k,n. The cf of X is F,(f), and the 
cf of the independent noise is F,(F). 

whence 

= F&, + &) si$$$). 
rb 

(7) 

F,,,, (&, &,), the joint cf of the input and output of a 
quantizer is now expressible in terms of the cf of the 
quantizer input, F,(t). 

This is a complete statistical description of the quantizer 
for, first-order (uncorrelated) statistics. Fig. 14 is a sketch 
of the joint cf F,,,, (&,, Eb) which is the Fourier transform 
of the joint input-output distribution shown in Fig. 10. 

Fig. 14-Joint input-output characteristic function of a quantizcr 
with a first-order random input. 

The joint and self moments depend only upon the slopes 
(partial derivatives) of F,,,, (lo, &,) at the origin, and are 
unaffected by the periodicity of that function as long as 

there is no overlap. It may be concluded that with respect 
to all detectable moments, quantization is the same as 
addition of random independent noise of distribution 
Q(n), as long as the Nyquist restriction on W(X) is 
satisfied. 

The impulse distribution of the guantizer output, and 
the distribution of the quantizer noise Q(n) may be 
rederived readily from F,,,, (&, lb). A plane perpendicular 
to the &,, tb plane through the tb axis intersects the joint 
input-output cf F,,,. (&, [b), giving a section which is 
F,, (&,), the cf of the output (see Fig. 14). As determined 
previously, the cf F,, ([b) is periodic of frequency I$ where 
each section is identical with the cf of the sum of the 
quantizer input and independent quantization noise. 
Likewise, a plane perpendicular to the &, Eb plane through 
the .$a axis gives an intersection which is F, (E.), the cf of 
the quantizer input. 

A section of F,.,, (l., fb) through the F axis and a 45O 
line in the .$a - &, plane as shown in Fig. 14, when projected 
either upon the F - &, plane or upon the F - .$b plane 
gives the cf of the distribution of quantization noise 
(the distribution of X’ - X). That the cut is at 45” 
insures the periodicity of the joint cf to have no effect 
upon the distribution of quantizer noise. This distribution 
is therefore the same as the distribution of added noise 
in Figs. 11 and 13, being Q(n), as shown previously. 

The description of the quantizer response to first order 
statistics is complete and useful in itself. However, in 
order to understand the behavior of the quantizer is 
systems, particularly in feedback systems, it is necessary 
to consider how the quantizer reacts to correlated (high- 
order) input samples. The methods already developed 
will be extended to handle multidimensional input dis- 
tributions. It has been .shown that, in many respects, 
quantization is the same as addition of a random in- 
dependent noise. Conditions will be shown under which 
quantization of corelated samples will be very much 
like addition of random independent uncorrelated noise 
of distribution Q(n) . 

Higher Order Statistical Inputs 
If the random quantizer input variable X is second 

order, (the simplest Markov process), a joint distribution 
density W(X,, X,) is required to completely describe its 
statistics. X, and X, are an adjacent sample pair. The 
distribution of the output is W/(X{, Xi). The joint dis- 
tribution between output and input is W(X,, Xi, X,, Xi), 
having cf F,,,, ~z.za~ (El., La, tlb, t26). In order to sketch 

the joint, distribution, five dimensions are needed. Some 
other way to illustrate its significant features will be 
sought. 
. W(X,, X,) may be resolved into a two-dimensional sum 

of a series of sin X/X’s (which is analogous to the previous 
one-dimensional case) provided a two-dimensional Nyquist 
restriction is satisfied. The cf of W(X,X,) is a sum of the 
separate components because of the linearity of the 
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Fourier transform. The quantization process is a linear 
operation upon probability distributions and characteristic 
functions. As a matter of fact, any situation in which a 
stationary random signal, even though the operation upon 
the signals may be nonlinear and have memory, has the 
characteristic that a linear operation is performed upon 
the input distribution to give the output distribution. 
The output and joint distribution of a quantizer are the 
sums of the corresponding distributions that could result 
from each component of the input distribution acting 
separately. It is necessary here to consider nonphysical 
distribution densities that not only have areas and volumes 
$different from unity, but also have regions of negative 
density. 

The Fourier transform of W(X,, X,) is (9). 
m 

F,,,,GL, GJ = j/ W(X,, Xz~e”x”‘+X~~~) dX, dX,. (9) 
-m 

If this cf is negligible outside the range -4/2 < &, 
t2 < +/2 where 4 = 2a/q, a two-dimensional Nyquist 
restriction is satisfied. W(X,X,) may be thought of as a 
sum (10) where each coefficient A,, is the value (amplitude 
sample) of W(X,, X,) at X, = lcq and X, = lq. 

All that needs be considered to be perfectly general is how 
the quantizer acts upon an input distribution such as the 
lc, 1 term of the above sum. 

Start with a special case, the 0, 0 term, a two-dimensional 
.“(sin X/X)” centered at the origin. Such a distribution is 
a degenerate second order, clearly that of first-order 
statistics, and already examined completely. The adjacent 
samples X, and X, are statist’ically independent of each 
.other, and so are their quantization noises. Periodicities 
of “frequency” 4 in the joint input-output cf must exist 
along the output variable axes .$I* and tza. There is no 
-periodic variation of this joint cf with the input variables 
,&, and .&,. The quantization noise, which is first order, is 
-also expressed here as being degenerate second order. 

The more general problem, that of quantization of the 
two-dimensional “(sin XIX)” distribution component 
centered at X, = kq and X, = lq presents no new diffi- 
culties. This situation cannot be distinguished from that 
,of quantizing (with identical quantizers) two first-order 
jointly-related variables X, and X, as shown in Fig. 15, 
.except that the possibility of having different averages 
for X, and X, is included. This could not arise in physical 
stationary processes where X, and X, are adjacent 
samples of the same random process. It should be noticed 
that X, and X, are. actually statistically independent of 
*each other since their j,oint distribution is factorable. It 

3 
0 Q 0xI' 

x2-p--/- x2 
Fig. 15-Representation of the quantization of a second-order signal 
as the separate quantization of two jointly-related first-order signals. 

is no surprise then that the quantization noise due to the 
lc, 1 component turns out to be first order. The quantization 
process is the sa,me as for the 0, 0 component because X1 
and X, are shifted by integral numbers of quantization 
boxes. Any such shift signifying an integral increment to 
the average of the quantizer input is always accompanied 
by an identical shift in the quantizer output. It follows 
that the joint input-output cf due to the lc, 1 component has 
a typical section that is identical with that which would 
result singularly if the quantizer were replaced.by a source 
of first order quantization noise. Linearity of the quanti- 
zation process insures that the joint input-output cf for 
any second-order input distribution density quantized 
sufficiently fine to satisfy the Nyquist condition will have 
a typical section which is the same as the cf resulting if 
the quantizer were replaced by purely random quanti- 
zation noise. 

Fig. 15 may be modified to include 3 or more jointly- 
related first-order signals to represent higher-order 
processes. By arguments similar to those of the second- 
order process, a most general result may be induced: If the 
probability density distribution of an n-th order quantizer 
input has an n-dimensional cf that is negligible outside the 
range -+/2 < [, D . . . .&, < +/a, the joint cf between the 
quantizer output and input, a function of 2n variables 
‘SW Lb . . . ‘LEti*, is periodic of radian fineness 4 along the 
axes h; Lb, 1 . . Lb and aperiodic along the axes &., 
E 201 . . . &, having a typical repeated section which is the 
same as the joint cf between the quantizer input signal 
and that input plus independent first-order noise of dis- 
tribution Q(n). A sketch of this for a first-order quantizer 
input is already shown in Fig. 14. When the multi- 
dimensional Nyquist restriction is met, all self and joint 
moments are unaffected if the quantizer is replaced by a 
source of first-order independent noise of distribution 
Q(n). These’ moments, being determined by derivatives 
of the cf at its origin, are not affected by the periodicities 
when there is no appreciable overlap. The periodicities 
in ‘the cf domain correspond to the regularly-spaced 
impulses in the quantizer output distribution density. 

APPLICATIONS 

Sensitivity of the Nyquist Test to Distribution Properties 

To what extent the Nyquist condition is met as a func- 
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tion of the quantization fineness is a question that naturally 
arises. This will be answered for several cases of Gaussian 
statistics which are important in quantizer system analysis 
and which will show qualitatively what is to be expected 
for other kinds of smooth distributions. 

Consideration of the first-order Gaussian cf shows that 
F*(E) will not go to zero outside of any finite band about 
its origin. However, it acquires negligible proportions very 
rapidly, going down with e-‘“‘1’2. c is the root mean 
square of the Gaussian signal X. If we let the quantization 
box size q = U, then the error made by assuming that the 
cf obeys the Nyquist restriction may be estimated from 
consideration of Fig. 16 where the cf of quantized first- 
order Gaussian statistics is shown. Each section, repeated 
with radian fineness 4 = 2a/q = 27r/cr, is of the form 
e--E’u”2 [sin (~$‘+)]/(&4). The errors in the moments of 
the quantized statistics when evaluated by assuming that 
the quantization noise is independent and of the dis- 
tribution Q(n) are due to the contributions of the overlap 
to the derivatives of the typical section at t,he origin. 
Because X was chosen with zero average, the typical 
repeated cf section is even (symmetrical), causing the 
contributions to the odd derivatives to cancel, while the 
contributions to the even derivatives reinforce. The 
theoretical errors in all odd moments are zero. The errors 
in mean square and in mean fourth that result have been 
calculated for several box sizes. 

Fig. 16-Characteristic function of first-order Gaussian distribution 
after quantization. 

. 
Errors in analysis are extremely small when q = CT 

They remain moderately small when the quantization is 
as rough as q = 2u, but increase rapidly as the roughness 
increases further. When q = g, the error in the mean 
square is lo-” per cent of the mean square of the input, 
and about 1O-5 per cent of the mean square of the quanti- 
zation noise. These percentages climb to 3 and 9 per cent 
respectively when q is increased to 2~. Such errors are very 
tolerable, being suprisingly small for quantization that 
rough. The error in mean fourth is 3(10)-5 per cent of the 
mean fourth of the quantizer input, 6(10)-2 per ,cent of 
the mean fourth of Q(n) when q = (r. The error in mean 
fourth becomes large for q = 2a, being 17 per cent of the 
mean fourth of the input and 250 per cent of the mean 
fourth of Q(n). 

The accuracy of this description of ‘first-order statistics 
as reflected in the accuracy of the moments of the quantizer 

output for Gaussian input is sufficiently great until the 
box size is as big as two standard deviations. From there 
on, the Nyquist restriction breaks down rapidly. 

It was held that quantization noise is first order and 
uncorrelated although the quantizer input may be highly 
correlated, for fine quantization. Just how fine this has 
to be as a function of the correlation coefficient of a 
second-order Gaussian input will give a general indication 
of the sensitivity of the statistical independence of 
quantization noise to quantization box size. 

The general k, 1 moment of a second-order process is 
given by (11). 

Its errors when calculated (as above) are due to the 
contributions of overlap to this derivative at the origin. 
Of interest is the error in the corelation (X,X,), the 1, 1 
moment. This error is equal in magnitude to the corre- 
lation in the quantization noise. A plot of the normalized 
correlation of quantization noise (the ratio of the joint 
first moment to the mean square) as a function of the 
normalized correlation coefficient of the second-order 
Gaussian distribution of the input (the ratio of the 
correlation coefficient (X,X,) = uj2 to the mean square 
a’) is shown in Fig. 17. A good approximation for the 
correlation of quantization noise is (12). 

(normalized correlation) a e-4ru”a’(‘-a1”“). (159 

Fig. 17-Correlation of quantization noise vs correlation of quanti- 
zer input signals. 

It can be seen that quantization noise is practically 
uncorrelated until the box size is one standard deviation 
and the input correlation is 95 per cent, or until the box 
size is two standard deviations and the input correlation 
is 80 per cent. A box size of two standard deviations corre- 
sponds to extremely rough quantization, The dynamic 
range of an input variable is practically three quanti- 
zation levels. This is almost in the realm of switching 
circuits. 

It can now be qualitatively stated that if the dynamic 
range of a variable being quantized extends over several 
boxes, the quantization noise will be uniformly distributed 
and will be a first order process. All moments will be the 
same as if the quantizer were a source of random in- 
dependent noise. 
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Gathering and Processing Grouped Statistical Data 

Statistical information is usually obtained by averaging 
the values of recorded numerical measurements. An 
approximate first-order distribution density may be had 
in the form of a histogram whose groups have width 
corresponding to the granularity of the data. Multi- 
dimensional histograms may be constructed from the 
same kind of data for higher-order processes. It is usually 
desirable to have some means of arriving at the original 
ungrouped distribution densities, particularly when the 
quantization is rough. This is perfectly possible when the 
Nyquist condition is satisfied. When the most significant 
part of the dynamic range of a smoothly-distributed 
variable covers about four or more quantization levels, 
the ungrouped distribution may be obtained with very 
small error in moments, as was shown above for the 
Gaussian statistics use. The “bars” of the histogram are 
“compressed” into impulses in the center of each group, 
then a minimum “bandwidth” envelope is passed through 
the impulse samples [“(sin X/X)” interpolation], and what 
results is the true ungrouped distribution convolved with 
Q(n). Another way of acquring the ungrouped distribution 
density having an analytic cf is to calculate its moments, 
which may be accomplished by means of Sheppard’s 
corrections for first-order distributions. These corrections 
may be generalized for higher-order cases by treating the 
quantizer as a source of independent first-order noise 
distributed according to Q(n). 

An example of how properties .of higher-order distri- 
butions are able to be obtained from roughly-quantized 
experimental data is the calculation of an autocorrelation 
function. Since the autocorrelation is a joint first moment, 
quantization is again equivalent to the addition of random 
independent noise. A two-bit autocorrelator could be 
used when the full dynamic range of a random variable 
is broken up into four quantization levels. Only negligible 
error will be made in a point on the autocorrelation curve 
as long as the correlation coefficient before quantization 
is less than 0.8. The quantization noise is uncorrelated. 
The only change necessary is the subtraction of l/12 q2 
from the mean square point. Mean squares of independent 
random waves add, and the mean square of quantization 
noise, the second moment of Q(n), is one-twelfth of the 
square of the box size. Autocorrelations of data deliberately 
made crude have been calculated by the M.I.T. Whirlwind 
computer. All results show t,hat autocorrelations obtained 
from rough data (2-bit accuracy) are equivalent to those 
taken from fine-grained data. 

System Applications--Error Analysis 

Two examples of closed-loop quantizer systems are 
shown in Fig. 18(a) and (b). The former has a quantizer 
in the feedforward section, while the latter has quantized 
feedback. The symbol “D” represents a linear sampled- 
data filter, one whose present output sample is a linear 

combination of past and present input samples. Any 
sampled-data system having a single quantizer and a feed- 
back path about it can be reduced to either form. These 
systems could represent situations ranging from crude 
contactor servos to very precise numerical difference-equa- 
tion solution. 

’ Q - 

D-- 

tb) 
Fig. 18-Quantiaer sample-data feedback systems. 

The first problem to be considered when making a 
statistical analysis of these systems is that of testing the 
signal at the quantizer input for the satisfaction of the 
Nyquist condition. Elaborate and conservative methods 
have been devised for this, but the whole question practi- 
cally reduces to whether or not the signal input to the 
quantizer has a dynamic range covering at least several 
quantization boxes. 

Actual probability density distributions of the outputs 
of quantizers and quantizer systems are obtainable with 
varying degrees of difficulty depending on the natures of 
the systems and the statistics of their input signals. These 
include the effects of the causality of quantiiation noise. 
For example, the probability density of the output signal 
in Fig. 18(b) is continuous if appropriate Nyquist con- 
ditions are satisfied at both the input and output, of the 
quantizer. The distribution of the system output is 
identical with that which would result if the quantizer 
were replaced by a source of random independent noise. 
On the other hand, the output distribution of Fig 18(a) 
is discrete, having a minimum bandwidth envelope 
corresponding to the distribution would result’ if again the 
quantizer were replaced by a source of random noise. 

The moments of these distributions are far more readily 
obtainable because they depend only upon the moments 
of the signal and of the quantization noise. This was 
shown for the quantizer alone, and can be shown to apply 
generally to “linear” quantizer systems and certain non- 
linear ones. Thus, the moments of signal plus noise are 
obtainable by treating quantization as addition of in- 
dependent random noise having the distribution density 
Q(n). 

In most situations, the quantization noise alone is of 
interest. The causal tie between noise and signal is of 
secondary importance. The distribution of the noise 
component in a system output is usually easy to calculate, 
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and once acquired, characterizes the effects of quantization 
in the system for the large class of input signals that 
allow satisfaction of the Nyquist condition at the quantizer 
input. 

Once a quantizer is driven with an input that satisfies 
the Nyquist restriction, addition of another independent 
signal cannot change this situation. When their respective 
cf’s are multiplied to give the cf ‘of the sum, the result can 
be no wider than the narrower cf of the two constituents. 
In general, it will be even narrower than this and the 
restriction will be met more easily. In the amplitude 
domain, a quantizer having a sufficiently great dynamic 
range (extending over several quantization boxes) can 
only have this range increased by the addition of another 
independent input. Since the output of a quantizer is the 
same as the input plus an additive noise of fixed dis- 
tribution Q(n), the quantizer is “linearized” by any input 
component satisfying the Nyquist restriction. The same 
effects are realized with statistically relat#ed input com- 
ponents except where the addition of a component signal 
reduces the dynamic range already existing to one so 
small that the restriction is no longer met. 

The system consequences of the “linearization” of ‘a 
quantizer are similar to those for the quantizer alone. 
Here, the entire system is “linearized.” For two input 
components, the quantizer output consists of the sum of 
three parts. Two of them are the respective output com- 
ponents of the linear equivalent system when driven by 
the two inputs. The third is due to quantization noise. 
It has a different waveform in time aft,er the addition of 
the second input component, but has the same statistical 
characteristics as before. 

According to the Central Limit Theorem, the addition 
of a good number of independent random quantities of 
arbitrary distribution yields a random process that 
becomes closer and closer to Gaussian as the number of 
included variables is increased. The output of a sampled- 
data filter at a given sample time is a weighed sum of 
past inputs that are often of a first-order process, so that 
statistical outputs of “long-memory” sampled-data 
systems are almost Gaussian. In particular, if the impulse 
response from a quantizer point to the output contains a 
half-dozen samples or more, a given noise output, the 
sum of that many independent past noises is nearly 
Gaussian. All that is needed to specify the first order 
distribution of the system output component due to 
quantization noise, then, is its mean square. Since the 
original quantization noise samples are independent, 
mean squares add. The mean square system noise is then 
l/l2 q2 times the sum of the squares of the impulse 
magnitudes of the response at the output to a unit impulse 
applied at the quantizer position. 

As an example of a simple approach to an error analysis 
problem, consider the numerical solution of the homo- 
geneous first-order nonlinear differential equation with 
its initial conditions: 

$+y’=o 
* (13) 

Y(O) = 1.12. 

An associated difference equation with a sampling interval 
of l/10 is (14). 

1 
yk+l = Yk - - 10 Yi 

(141 
Yo = 1.12. 

The numerical point-by-point solution of this difference 
equation is given in Fig. 19. Notice that rounding after 
squaring greatly simplified the calculations and main- 
tained the length of the numbers within three decimal 
digits. A block diagram showing the numerical solution 
scheme (including quantization) is Fig. 20(a). Fig. 20(b) 
gives the “small signal” response in yk due to a unit 
impulse applied at the quantizer position. The “gain” of 
the squaring device is 2y, which is taken to be approxi- 
mately 2. 

I 
K ht k" y,2 wounded) Y,,+, = y,- & yk2 (rounded) 

0 1.12 1.2544 1.3 Y,= 1.12 -0.13 = 0.99 

I 0.99 0.980 I 1.0 Y,= o.w-o.lo=O.BQ 

~ 

Fig. 19-Point-by-point solution to (14). 

(4) (b) 

Fig. 20-(a) Block diagram of numerical solution. (b) “Small signal” 
unit impulse response from quantizer point to output. 

The error to be expected in such a solution due to 
round-off may be predicted by replacing the quantizer of 
Fig. 20(a) by an independent noise source whose mean 
square is l/1200. The variance of the error in the fourth- 
output sample, for example, is 
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Thus the root mean square error in the fourth-output 
sample when averaged over several initial conditions in 
the vicinity of 1.12 will be less than 1 per cent of this 
sample. 

CONCLUSION 

A numerical abstraction or description of a continuous 
function of an independent variable may be made by 
plotting the function on graph paper, as in Fig. 21. 

Fig. 21-Sampling and quantization. 

Shown are the quantized samplesof the function, a series 
of numerical values. This plot suggests that quantization 
should be like sampling in amplitude, which is indeed the 
case. Quantization is a sampling process that acts not 
upon the function itself but upon its probability density 
distribution. A Nyquist sampling theorem for quanti- 
zation exists such that if the quantization is sufficiently 
fine, statistics are recoverable, whereas in conventional 
sampling, the Nyquist sampling restriction when satisfied 
insures that the function is recoverable. 

Whenever the statistics are recoverable, the noise 
generated by the quantizer is well understood. This 

knowledge allows one to answer questions such as, would 
it be better to sample less often and quantize finer, making 
use of the same amount of effort and equipment. When 
quantization takes place in a system, it is possible to 
predict the quality of performance in terms of the equip- 
ments used in achieving it. 
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