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A Theory of Multirate  Filter  Banks 
MARTIN  VETTERLI 

Abs#ruct-Multirate filter  banks  produce  multiple  output  signals by 
filtering  and  subsampling  a  single  input  signal, or conversely,  generate 
a  single  output by upsampling  and  interpolating  multiple  inputs.  Two 
of  their  main  applications  are  subband  coders  for  speech  processing 
and  transmultiplexers  for  telecommunications.  Below, we derive  a  the- 
oretical  framework  for  the  analysis,  synthesis,  and  computational  com- 
plexity  of  multirate  filter  banks.  The  use  of  matrix  notation  leads to 
basic  results  derived  from  properties  of  linear  algebra.  Using rank and 
determinant  of  filter  matrices, it is  shown how to  obtain  aliasing/ 
crosstalk-free  reconstruction,  and  when  perfect  reconstruction  is pos- 
sible.  The  synthesis  of  filters  for  filter  banks is also  explored,  three 
design  methods  are  presented,  and  finally,  the  computational  complex- 
ity is considered. 

I. INTRODUCTION 

A filter bank is a signal processing  device that produces 
M signals from  a single signal by means  of filtering 

by M simultaneous filters. In the multirate case [4], the 
M signals are  subsequently  subsampled by a  factor N .  
While  the  above-described  device  performs  an analysis of 
the input signal,  a filter bank  can  also be used to synthe- 
size  a  single signal from M input signals (upsampled by 
N in the multirate case). 

As will be  shown, this simultaneity of the filtering and 
sampling  rate  change has profound  consequences on the 
properties of  the filter bank,  both  from  a theoretical and 
a  computational  complexity point of view. 

Concerning the theory, it turns  out that in  a multirate 
filter bank,  there is no need to meet  the  sampling  theorem 
0n.a channel-by-channel basis, since it is sufficient  to  meet 
it on the sum  of  the  channels.  Therefore, ideal band-pass 
filters (which are unrealizable) are not necessary  any- 
more,  and  a new theory can be developed  which looks at 
all  channels  simultaneously rather than considering each 
one separately (as in single filter signal processing). 

This simultaneity was implicitly used in the quadrature 
mirror filter (QMF)  approach first introduced in [5], where 
nonideal half-band filters precede  a  subsampling by 2. 
Nevertheless, a  clever synthesis annihilates the aliasing 
completely,  showing that even if the sampling  theorem 
was violated in each  single  channel,  the filter bank as  a 
whole did not violate it.  The  QMF’s have then been stud- 
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ied extensively and applied successfully to subband  cod- 
ing of speech [3] ,  [6], [7], [8], [11]. Recently, they have 
been  extended to the two-dimensional  case as well [33], 

Concerning the complexity  of filter banks,  a break- 
through  was  obtained  with  the  polyphase/FFT  implemen- 
tation of uniformly  modulated filter banks [ l  j which are 
used in TDM to FDM transmultiplexing [4]. Again, the 
simultaneity of the processing (together with the fact that 
the various filters are derived  from  a single prototype) is 
central to this powerful result. This  polyphase/FFT ap- 
proach has also  been  used  in  spectmm analysis [ 101, [31 j. 

While there is obviously  a relationship between sub- 
band  coding  and transmultiplexing since  both  use multi- 
rate filter banks,  the  two fields long  evolved  indepen- 
dently.  The first attempt to use the results on  complexity 
of transmultiplexers in the context of subband  coding  was 
the introduction of the pseudo-QMF filters [ 141, an ap- 
proach that has  been  further studied and  implemented 
[22], [ 171 , [ 181, [2], [ 131. That  the result on aliasing can- 
cellation from  subband  coders  could  be  used to cancel 
crosstalk in transmultiplexers as well was  shown theoret- 
ically in [35]  and [36]. 

While  quadrature  mirror filters annihilate aliasing per- 
fectly, they allow  only  approximate reconstruction of  the 
original signal.  The first solution allowing perfect recon- 
struction was  shown in [24] for  two  channel  systems,  and 
was extended  in  [39]. For  an arbitrary number of chan- 
nels, perfect reconstruction appears in [35].  While these 
methods  use  FIR filters only, perfect reconstruction with 
IIR filters has also been  proposed  [26],  [30], [38], but the 
stability of the filters is difficult to achieve. 

In parallel to these  developments,  an effort was put into 
trying to formalize the various results within a  common 
framework.  The  main result was certainly the introduc- 
tion of matrix notations for  the analysis of multirate filter 
banks [21], [25], [26], [34], [35].  Thanks to this formal- 
ism, it has  been  shown that aliasing in subband coders can 
be cancelled in general,  a fact known previously only  for 
two  channel  systems.  The  power of the matrix approach 
to multirate filter banks is shown by the numerous results 
that can  be  obtained  with it [25], [27],  [37], [38], and the 
conciseness of some of the proofs below  should  be  con- 
vincing. 

The  paper starts out in Section I1 with  some consider- 
ations on  linear, periodically time-varying systems, a class 
of  systems to which multirate filter banks  belong  to. After 
reviewing the basic operations (up- and  subsampling), 
we consider  the  two generic filter banks,  namely, the 
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analysis and  the synthesis filter bank.  The  mathematical 
treatment of  these  banks  leads naturally to  the definition 
of filter matrices (of size M by N )  which will be central 
to our  further  developments. 

Section I11 gives the analysis of the two  major physical 
systems that use  multirate filter banks, that is, the sub- 
band coder and the transmultiplexer. Thanks to the matrix 
notation, the developments are  succinct, and the impor- 
tant conditions of  aliasing/crosstalk-free reconstruction as 
well as of perfect reconstruction can  be clearly stated. 

Section IV looks  at  the  fundamental properties inherent 
to filter banks.  After  a  closer  look at filter matrices (fac- 
torization,  inverse),  a  number  of results is proven  on 
aliasing-free reconstruction in  subband  coders  and cross- 
talk-free reconstruction in transmultiplexers,  as  well as on 
perfect reconstruction. Basically, the rank  of  the filter ma- 
trix has to be equal to the sampling  rate  change  in  order 
to allow  aliasing/crosstalk-free reconstruction. Perfect re- 
construction is related to  the  zero locations of the deter- 
minant  of  the filter matrix.  The duality of subband  coding 
and transmultiplexing is demonstrated. It is also shown 
that there exist  minimum delay solutions (delay of N - 1 
samples in an N channel  system) as  well  as perfect recon- 
struction using linear  phase filters only. Results on  mod- 
ulated filters are  also  derived. 

Section V  explores  the synthesis of filters for filter 
banks,  showing the  possible tradeoff between filter qual- 
ity, reconstruction quality,  and  input-output  delay.  Three 
filter design  methods  are  also  described,  two of them 
guaranteeing perfect reconstruction. The  last section is 
concerned  with  the  computational  complexity of filter 
banks. After showing potential problems linked to alias- 
ing cancellation (requiring more  complex synthesis filters 
in general), we review  some  methods  which yield sub- 
stantial reductions in complexity. 

Before  proceeding, we indicate  some notatiqnal con- 
ventions that will be used in the following. Bold  face italic 
letters  indicate matrices (upper case) and vectors (lower 
case).  Note  that  the  numbering of lines  or  columns  always 
starts with 0. Diag [ * -1 refers to a diagonal matrix  whose 
elements  are  listed  between the brackets (the  elements  can 
be given in vector form  as  well).  Det [ -1 and Co [ - a ]  

stand for  determinant  and  cofactor  matrix, respectively. 
The  letter N is used  for  sampling  rate  change, M for  the 
number of filters in a filter bank, and L for  the length of 
FIR filters. Implicitly, W stands  for  the Nth root of unity 
( W = '  e-j2a1N ), where N is given in the  context.  The z- 
transform  [19], [20] of signals  and filters will be used  ex- 
tensively and indicated by the  letter z. As a  simple ex- 
ample, H ( z )  is  a matrix  of rational functions in z, that is, 
its'elements  are z-transforms of signals or filters. 

the analysis of such  systems.  Next, we review the  basic 
relations defining up-  and  subsampling.  Finally,  the  two 
generic filter banks,  that  is, analysis and synthesis filter 
banks,  are defined and  analyzed. 

A.  Polyphase and Modulation  Representation of 
Periodically Time-Varying Linear  Systems 

Multirate filter banks  belong to  the  class of linear pe- 
riodically time-varying  systems [4], since they contain 
linear filters as well as time-varying operations (subsam- 
pling by N ). Such  systems  can be modeled  with N im- 
pulse responses  corresponding to  the  system  response to 
impulses at time 0, 1 ,' * : - , N - 1. Assume  that we  know 
the z-transforms of  these  impulse  responses  and  call  them 
T o ( z )  to T N -  ] ( z ) .  In  vector  form,  we can  write 

t ( z )  = [T0(z)7 T l ( z ) ,  ' ' ' 9 T N - l ( z ) ]  * ( l )  
T 

Now,  we introduce the polyphase  decomposition (of  size 
N )  of the input signal (in the z-transform domain).  This 
decomposition,  which  groups  all input samples  having the 
same  phase (modulo  a period N ) into  a single element of 
a  size N vector,  can  be written in vector  form  as 

xp(z)  = [xpO(z), xp1(z)7 ' > xp?+I(z)]T ( 2 )  

where 
m 

The polyphase  decomposition is known to  be fundamental 
in the transmultiplexer case [l] ,  and its importance for 
filter banks in general.wil1 be shown  below.  Using (1) and 
(2), it is easy to  write  the  output of a  linear  system  varying 
with  a period N as  (we  assume  here  that input and output 
have  the  same  sampling  frequency): 

Y ( z )  = [ t ( z ) ] '  * x p ( z ) .  

Another possible approach  uses  the modulation  decom- 
position (of  size N ) of the  input,  which is obtained  from 
the signal and  its N - 1 versions modulated by the roots 
of unity of order N (except the root equal  to 1). This  leads 
to the  following size N vector  (in  the  z-transform  do- 
main) : 

x m ( z )  = [ X ( z ) ,  X (Wz) ,  - * , X ( W N - ' z ) l 7  
w = e - j 2 r / N .  ( 5  1 

As one  can  verify,  the  following relation relates the 
polyphase to  the  modulation representation of  a signal 
[38]: 

11. BASIC  OPERATIONS IN MULTIRATE FILTER BANKS x p ( z )  = 1/N F x,(z) ( 6 )  

Three basic operations are used in multirate filter banks: where F is  the usual Fourier  matrix of size N X N whose 
linear filtering, subsampling,  and  upsampling.  Since sub- ' elements are defined ,as 
sampling by a constant factor  belongs to the class of  linear 
and periodically time-varying  systems, we first consider ( 7 )  
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Using (4) and (6), one can write the output of a  linear  and 
periodically time-varying  system as 

Y ( z )  = 1/N [ t ( z ) ]  F x,(z). (8) 

Thus, the output is a  linear  combination  of filtered ver- 
sions of X ( z ) ,  X (  Wz)  up to X (  W N - I z ) .  The  polyphase 
and the  modulation representation are two fundamental 
ways of looking at linear, periodically time-varying sys- 
tems. By analogy with conventional  system  analysis,  one 
could call the  polyphase representation a  time  domain 
view  of the  system  behavior,  while the modulation rep- 
resentation could be considered  a  frequency  view. It is 
thus quite natural that the  two representations are related 
through  a  Fourier  transform, as expressed by (6). In the 
following,  we will use  either  one of these two represen- 
tation modes,  depending  on  which  one is more  convenient 
for the specific problem  under  consideration. 

B. Basic Operations 
Besides  linear filtering, the  two  fundamental operations 

in multirate filter banks are subsampling and upsampling 
by a  factor N. We will only  consider  integer  sampling rate 
changes in the .following,  since rational ones  can be ob- 
tained by cascading integer ones [4]. If  a signal x ( n )  with 
z-transform X ( z )  is subsampled by N to yield an output 
Y ( z ) ,  then the  latter  can  be represented as  [23], [4] 

N -  1 

Y ( z )  = 1/N c X (  W W N ) .  (9) 
k=O 

Using vector notation and relations (2)-(6), this can  be 
written as 

~ ( z )  = I /N[ I  I - * 11 * x,(z' /~) ( loa)  

= [ l  0 - * 01 - x p ( z l / N ) .  ( lob)  

If a signal y (  n )  is obtained  from  upsampling the signal 
x(n) by a  factor N, that is, stuffing N - 1 zeros between 
each  sample of x(n), then their z-transforms are related 
by  1231, 141 

Y ( z )  = X ( ? ) .  (11) 

The two operations corresponding to (9) and (11) are 
shown in Fig. 1 together with some useful combinations 
of them.  Table I gives the corresponding  input-output re- 
lations that we  briefly consider  below.  The  case c) of Ta- 
ble I [Fig. l (c)] is trivially obtained by replacing (1 l )  into 
(9) or (lo), and case  e) is obvious.  In  the case d), where 
filtering is placed  between the sub- and the  upsampling, 
the filter appears  simply as a multiplicative factor  (but 
with  Nth powers  of z ) .  In case f) finally, where filtering 
is placed  between the up- and the  subsampling,  the filter 
appears also in aliased versions at the  output. 

C. Basic  Filter Banks 
Filter banks  appear in two basic configurations. The first 

one, called analysisfilter  bank, divides the signal into M 
filtered and  subsampled versions. Such  a filter bank is  de- 

Fig. 1 .  Schematics of the  basic  operations in rnultirate filter banks  (see 
Table I for  the  input-output  relations). 

TABLE I 
BASIC OPERATIONS IN MULTIRATE  FILTER  BANKS WITH THEIR INPUT- 

OUTPUT  RELATIONS  (SEE  FIG. 1 FOR THE SCHEMATICS) 

operation input-output relation 

a) subsamplhg by N Y(z)  = l / N  Z X(Wkzl'N) 
N- 1 

k=O 

b) upsampling by N Y ( 2 )  = X$) 

c) sub- followed by upsampling by  N Y(2) = 1/N Z X(Wkz) 
N-1 

k=O 

d) same asc) but with flitering in between Y ( z )  = 1/N H(zN) Z X(Wkz) 
N-l 

k=O 

e )  up-  followed  by sub-sampling by N Y(z) = X(z) 
(note that the  sub-sampling  has to be 
done in  phase with the upsampling) 

f) same  as e) but with 
N-1 

llltering In between k=O 
Y ( z )  = l i N  X(z) 2 H(WkzlIN) 

picted in Fig. 2. The second configuration, called synthe- 
sis JiZter bank, generates a single signal from M upsam- 
pled and interpolated signals. Fig. 3 shows such a syn- 
thesis filter. bank. 

We start by analyzing  the filter bank of Fig. 2. The size 
of that filter bank is M ,  while the subsampling  factor at 
the output is N. Call h ( z )  the vector of size M containing 
the filters Ho ( z  ) to HM - ( z  ), and x ( z  ) the vector of the 
outputs of these filters. Obviously, 

.(z) = h ( z )  * X ( z ) .  (12) 
The vector of  subsampled  outputs, called y ( z )  , is equal 
to [from (9) and (12)] 

N -  I 

y(2) = 1/N c x( WkZ1lN) 
k = O  

N - l  

= 1/N c h( WkZ1lN) X (  W k z l l N ) .  (13)  
k=O 
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Fig. 2. Analysis  filter  bank of size M with outputs subsampled by N .  

Fig. 3 .  Synthesis  filter  bank of size M with inputs upsampled by N .  

Similarly to what  was  done  in (lo), the relation (13) is 
more conveniently expressed  with  matrix notation. To this 
end, we introduce the modulatedJilter matrix H , ( z )  , de- 
fined as follows: 

(14b) 

y(z) = l /NHm(z ' /N) - (15) 

Then,  the relation (13) becomes equal to [using (5 ) ]  

The equivalent representation in the  polyphase  plane is 
obtained by reversing (6) and introducing it into  (15). 
Then, y (2) is equal to 

y(z) = H , ( z ' / ~ )  * F-' - X ~ ( Z ' / ~ ) .  (16) 

We  can now define a polyphase  filter matrix Hp ( 2 ) .  In 
order to have  a  similar relation between  the matrices as 
between  the vectors [see relation ( 6 ) ] ,  we  write 

H p ( z )  = 1 / N  H,(z) F. (17) 

Note  that  both matrices will be analyzed in detail  later  on. 
Recall simply  that  their sizes are both M X N .  In order  to 
simplify (16),  we rewrite F -  ' as 

F-'  = l / N F J  (18) 
where 

10 1 0 0 - * -  0 O J  

is simply  a  permutation  matrix that exchanges  line or  col- 
umn i with  line or column N - i ( i  = 1 e * e N - 1 ). 
Using (17) and (18) allows  one  to  transform (16) into 

y(z) = Hp(z'/N) - J * x , ( ~ ' / ~ ) .  (20) 
The  meaning  of (20) is the following: the output y ( z )  is 
made  up  from  samples  appearing at time instants which 
are multiples of N only  (because  of the subsampling).  The 
ith column of Hp ( z  ) produces implicitly a delay of i sam- 
ples,  while the ith line of xp ( z )  represents a delay of i 
samples as  well.  Thus,  thanks  to  the  permutation J ,  the 
product in (20) has overall delays which  are multiples of 
N only.  Thus,  with  the relations (15) and (20), we have 
precisely characterized the  output of a  subsampled anal- 
ysis filter bank, and  this  both in the modulation  and in the 
polyphase  plane. 

Turning to the synthesis filter bank of Fig.  3,  we note 
that  both x(z) and h ( z )  are  size M vectors.  It  is  easy to 
see  from relation (1 1) and Fig. 3 that  the  output of such 
a filter bank  can be  expressed as 

Y ( z )  = [h(z)]' ' x(z"). (21) 

In conclusion to this section, we recall that two  basic rep- 
resentation modes  are  possible for multirate filter banks 
(which are  linear periodically time-varying systems): the 
polyphase representation (similar to  a  time domain  view) 
and the modulation representation (equivalent to  a  fre- 
quency  representation).  Then,  we  expressed concisely the 
output of the two  basic filter banks,  and  this with relations 
(15) and (20) for  the  analysis  and (21) f0.r the synthesis 
filter bank.  The  matrix notation that  was  used so far 
mainly  for  convenience will prove to be extremely useful 
(actually necessary  in our opinion) in  order  to  prove basic 
results in  later  sections. 

111. SUBBAND CODERS AND TRANSMULTIPLEXERS 
In the  following,  we will consider filter banks  whose 

original signal (or signals)  are  reconsthcted from the out- 
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I 

x@) h(z) g(z) 

Fig. 5 .  TDM-FDM  transmultiplexer  (with  signal recovery) with M inputs 
and  a  channel  with N times  higher  sampling  frequency. 

put of  an  analysis or a synthesis  bank. The first such  sys- 
tem, where  the  analysis  bank  precedes a synthesis  bank, 
is generally referred to  as a subband coder, since subband 
coding is its most well-known application [4]. Such a sub- 
band coder  is shown  in Fig. 4.  The second system,  where 
the analysis  bank  follows  the  synthesis  bank,  corresponds 
to 7DM-FDM transmultiplexing (time division to fre- 
quency division transmultiplexing [ 11, [4]), and  is  shown 
in  Fig. 5. Below, both systems will be analyzed by using 
the formalism developed in Section 11. 

A. Subband Coder  Analysis 
Consider  the system of Fig. 4. The channel signals  (the 

outputs of the analysis  bank) are modified  by linear filters 
Ci ( z )  before entering the  synthesis  bank  whose output is 
the reconstructed signal R( z ) .  We  assume that sizes 
(given by M) and sampling rate  changes (given by N )  are 
the  same  in  the analysis and  synthesis bank. While y ( z )  
is  given by (15),  the modified channel signals are equal 
to 

Y ' W  = CSk> * Y ( Z >  (22) 
where C, ( z )  is  an M X A4 diagonal matrix (the subscript 
"s" stands for subband coding) and  is  given by 

C,(z) = Diag [CO(Z) G ( z )  * - * CN-I(Z)].  (23) 
For  the  subsequent  synthesis filter bank,  we  can  use re- 
lation  (21).  Using (15) and (22) in relation (21) leads  to 

the following formula for  the output of the subband coder 
(where g ( z )  is  the vector of output filters): 

2 ( z )  = l / N [ g ( z ) l T  - C&") * H,(z) - x&). 

(24a) 
This relation can also  be expressed  in  terms of the poly- 
phase decomposition of the input signal. In that case, by 
using (6) and (17), X (  z )  can be written as 

R(z)  = 1 / N  [ g ( z ) I T  * C,(z") * W,(z) * J * x,(z). 

( 24b 1 
Using relations (24a-b), it  is now easy to state  fundamen- 
tal properties of subband coders like the  one in Fig. 4 
(where the filters are assumed  to be time invariant). 

i) Aliasing-free output is achieved if 

[g(z)] 'CS(zN) H,(z) = [ F ( z )  0 0 - 01' (25a) 

where F ( z )  is  an arbitrary transmission filter. 
ii) Perfect reconstruction is obtained if 

[g(z)ITCs(zN) H,(z) = [ z - ~  0 0 - * - 01 (2%) 

where z P k  is  an arbitrary delay. Relations equivalent to 
(25a-b), but using polyphase filter matrices,  can  easily  be 
derived by using (17),or (24b). The means  to  achieve the 
above properties will be explored in detail in  the next sec- 
tion. Note  that nonlinear effects (like  the  quantization of 
the channels) have not been  considered. 

B. Transmultiplexer  Analysis 
In the  TDM-FDM transmultiplexer depicted  in Fig. 5 ,  

we  assume that the upsampling at  the input and the  sub- 
sampling at  the output are done in phase. Violation of this 
assumption has been considered in  [36] and  can  be mod- 
eled by an additional phase in the  channel.  The channel 
itself can  be modeled by a linear filter C ( z ) .  The input 
to the  channel, Y ( z ) ,  is  given by (21) and, thus, the out- 
put Y ' ( z )  equals 

Y ' ( z )  = C ( z )  Y ( z )  = C ( z )  [ h ( z ) ]  x(?). (26) 

To keep notations simple, we replace z by z N ,  which 
means that the reference frequency is now the channel 
sampling frequency (rather than the input sampling  fre- 
quency). Thus, and following ( 1 3 ,  the output R ( z N )  
equals 

T 

R(2") = l / N G , ( z )  * y 6 ( z )  (27) 

Y m  = G ( z )  * [ fJ , ( z )]  * .(z">. (28) 

where y;  ( z )  is, from (26), equal to 
T 

The  size N X N matrix C , ( z )  is diagonal (the subscript 
"t" stands for transmultiplexing) and  is given by 

C,(z) = Diag [ C ( z )   C ( W z )  * * C(  W N - l z ) ] .  (29) 

Combining (27) with (28) leads to the  following result for 
the  vector  of  outputs: 
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i ( z " )  = 1/N G,( z )  * Ct(z)  * [H,(z)] * X ( Z N ) .  
T 

( 30a 1 
The equivalent relation using  polyphase filter matrices is, 
using (17), 

a(z") = 1/N G,(z )  F C , ( z )  F I H , ( z ) l T  * x(Z"). 

(30b) 

Again, it is now easy to  state  basic properties of trans- 
multiplexers. 

i) Reconstruction  without  crosstalk  (assuming perfect 
phase recovery) is achieved if the'matrix T t ( z N ) ,  defined 
by 

is diagonal. Note  that it can be checked that T t ( z N )  is a 
function of z ". 

ii) Perfect reconstruction is achieved if Tt ( z  N, is a  di- 
agonal  matrix of delays. 

The next section will show how to  achieve  these goals. 
Furthermore,  the  close relationship that  can already be 
noticed between  subband  coders  and transmultiplexers 
will be highlighted. 

IV.  FUNDAMENTAL  PROPERTIES OF MULTIRATE  FILTER 
BANKS 

The basic question that is explored  is:  given  an input 
filter bank of a  subband  coder or  a  transmultiplexer, how 
should  one  choose  the output filter bank in order to achieve. 
aliasing (crosstalk)-free or  even perfect reconstruction of 
the input signal (signals).  We will see  that  this  leads  ba- 
sically to the  problem of inverting (partially) the filter ma- 
trices that were  introduced  above,  since  we  have to solve 
a  linear  system of equations as given by (25) or  (31).  The 
notion of critical sampling  (number of channels equal to 
the sampling rate change) is clarified, since it is the lim- 
iting case  where reconstruction without  aliasing/crosstalk 
can be achieved. 

Thus,  we first look  at  some properties of the filter ma- 
trices H,(z) and Hp(z), and then we give conditions and 
methods for  aliasing/crosstalk-free reconstruction as well 
as for perfect reconstruction. Minimum delay and  linear 
phase solutions are also described,  and  the  important case 
of modulated filter banks is considered in more  detail. 

A .  Properties of Filter Matrices 
Because of their  importance,  we will consider H,(z) 

and H p ( z )  in more  detail, especially their  possible  fac- 
torizations and  their inverses. First,  we give some defi- 
nitions. As  with matrices of  scalars,  one  can define de- 
terminants and  cofactors of filter matrices.  The rank is 
then defined as  the  size of  the  largest  square  submatrix 
with  nonzero  determinant.  Since  the  determinant is  a ra- 
tional function in z,  a zero determinant is  one  that van- 
ishes for  all values of z (and not only  for  some isolated 
values). We call a filter matrix stable if all its elements 

correspond to  stable filters. Note  that  the  cofactor  matrix 
of a  stable  matrix is stable  (since it is obtained by sum 
and  products of stable filters). Similarly,  one  can  speak 
of a causal filter matrix (all elements are causal filters) 
and note  that  its  cofactor  matrix  is causal as well [38]. 

Now, we will explore  the structure of  the filter matrices 
H m ( z )  and H p ( z ) ,  since they are not general matrices of 
rational functions in z ,  but rather a  subset of them  with  a 
well-defined structure.  This will help  the analysis and the 
inversion of the filter matrices.  First,  we recall that  any 
infinite impulse  response (IIR) filter can  be replaced by 
an equivalent filter (in the  sense  of its transfer function) 
but having  a  denominator in z". This  is detailed in [ 11 and 
141, and we  give  only  a brief derivation  below.  The  IIR 
filter H(z) can be written as 

H ( z )  = N(z)/D(z) = ( N ( z )  N'(z))/D(z")  (32a) 

where 

N ' ( 2 )  = D ( z N ) / D ( z )  (32b) 

is a finite impulse  response  (FIR) filter as can be verified. 
Actually, if pi is a root of D( z ) ,  then Wkpi ( k  = 0 * - 
N - 1 ) are roots of D ( z"). Thus,  the roots of N' ( z )  are 
of the  form Wkpi ( k  = 1 - * * N - 1 ). From now on,  we 
assume  that  all filters H,(z) are in the  canonical  form 

H , ( z )  = Ni(Z)/Dj(Z").  (33) 

If this is not the  case, they can first be transformed fol- 
lowing  (32).  The filter Hi(z) can be  further  decomposed 
into polyphase  components, similarly to what  was  done 
for the input signal in (1)-(3): 

N -  1 

~ ~ ( 2 )  = I /D~(Z)  z-j C ~ ~ , ~ ( z ~ )  (34a) 

where Ni,j( z N ) ,  the jth polyphase  component of the nu- 
merator'N,(z),  is given by 

j = O  

Lj = length of Ni ( z )  ( 34b ) 

where Lx J means biggest integer 5 x. With  the filters 
in the  form  given  by  (33),  we  can  rewrite  the  modulated 
filter matrix H , ( z )  as 

where 

D ( z N )  = 
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is an M X M diagonal  matrix of denominators  and 

( 3 5 4  
is an M X N matrix  of  modulated  numerators.  Similarly, 
the  polyphase filter matrix  can  be written in factorized 
form by using (17), (34),  and (35): 

H p ( z )  = D ( z N )  * N p ( z N )  I&) (36a) 

where Np ( z N )  is made of the N polyphase  components  of 
the M numerators Ni(z) [see (34)]: 

* * N M - I , N - ~  * ( 9 1  2 

( 3 W  

and Z d ( z )  is a diagonal matrix  of increasing delays 

Z,(z) = Diag [ l  z-' z-2 * z - ~ + ' ] .  (36c) 

Note  the generalization of  the  polyphase  concept that is 
done  above.  In  the classical transmultiplexer case  with  a 
single prototype filter [ l] ,  there  are  only N polyphase 
components (plus a  DFT)  while here each of the M filters 
has N polyphase  components, that is a total of N * M dif- 
ferent polyphase  components.  From  (17), ( 1  S), and  (36), 
we note that H,(z) can  be factored as 

H,(z) = D ( z N )  * N p ( t N )  * &(z) F * J .  (37)  

The factorizations in (36a) and (37) are important  because 
they highlight the structure and  facilitate  the analysis of 
the filter matrices. 

In the  following, we will focus on inverses of square 
filter matrices, that is, when M = N (the filter banks  are 
critically sampled  [4], [21]). Using (37), one  can rewrite 
the inverse of H, ( z )  as 

The  inverse  of FJ is simply 1 / N F  [using (lS)].  The in- 
verses of both Zd ( z )  and D (  z N )  are  immediate,  since they 
are diagonal 

[Zd(z)]-' = Diag [ 1 z 1  z2 * * z N - ' ]  (3%) 

Note,  however, that [Zd(i)]-' is not causal.  The causal- 
ity of [Np(zN)]- '  is not a  problem, but its stability is not 
clear at this point. Therefore,  we write 

[ N p ( z N ) ]  -' = 1 /Det [ N p ( z N ) ]  - Co [ N p ( z N ) ]  '. 

( 38d) 
In (38d), note that the cofactor  matrix,  the  determinant, 
and thus the inverse [ Np ( z N ) ] - '  are functions of z N .  In- 
stead of the true  inverse  of H ,  ( z ) ,  let us introduce a par- 
tial inverse H* (2) that will be causal and stable: 

H,(z)  = z-"A(z") * [ H m ( z ) ]  -' ( 3 9 4  

where 

n(z") = Det [ N p ( z N ) ] .  (39b) 

Actually,  a multiplication by z - ~ "  would  be sufficient to 
make H ,  ( z )  causal [see  (38b)l.  It turns out that a delay 
of N (which is time invariant in systems  varying with pe- 
riod N ) is more  convenient.  This brief overview  of struc- 
ture,  factorization,  and inverse of filter matrices should 
be  sufficient for the following sections. A  more detailed 
treatment can  be  found in 1381. 

B. Theorems on Multirate Filter Banks 
This subsection presents some  basic results on multirate 

filter banks. Conditions  under  which aliasing- or cross- 
talk-free reconstruction is possible are  given, together 
with results on perfect reconstruction [37], [38]. The 
equivalence  between  subband coders and transmultiplex- 
ers is also shown. 

77zeorem I :  Aliasing-free reconstruction in a  subband 
coder is possible if  and  only if the product of the channel 
filter matrix [ C, (zN)]  times the analysis filter matrix 
[ H, (z)]  has  rank N (the subsampling  factor). 

An immediate  consequence  of this theorem is that  the 
subsampling  factor N has to be smaller  or equal to the 
number of channels M ,  a result that is clear  from  a  sam- 
pling theory point of view. The necessity of the rank being 
equal to N is proven by contradiction. Aliasing-free re- 
construction was defined in (25a). Postmultiplying (25a) 
.by 1 / N  * Fleads to the following equivalent condition: 

[s(z)l' Cs(z"> * H p ( z )  

= 1 / N  [ F ( z )   F ( z )  . * F ( z ) ] .  (40) 

Using the factorization of H ( z )  given in (36) and post- 
multiplying (40) by [Zd(z)]",  we get 

[ g ( z ) l T  C,(z") D ( z N )  * Np(z") 

= l / N [ F ( z )  z F ( 2 )  * -  * zN- '  F ( z ) ] .  (41) 

Using the shorthand A ( z N )  = C s ( z N ) D ( z N ) N p ( z N ) ,  we 
note that if C, ( z N )  * Hp ( z )  has rank  lower than N ,  then 
the  rank  of A ( z N )  is also lower than N .  In that case, at 
least one  column ak ( z  N, of A( z N,  is either  zero (in  which 
case (41) cannot be verified) or linearly dependent of some 
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other  columns of A( z N ) :  
N -  1 

U k ( Z N )  = c Wi(Z") (42) 
i f k  
i = O  

where w i ( z N >  are weighting  factors.  Note  that  all func- 
tions in (42) are  in z N .  Now, because of (41), we have 

[ g ( Z ) ]  i" ' U k ( Z N )  = l /N  Z k  ' F ( Z )  (43) 

but  also,  because  of  (42), 
N -  I 

[ &)]' * U k ( Z N )  = l / N F ( z )  ,x z i  * W i ( Z N ) .  (44) 
1 = 0  
i # k  

Since  the w i ( z N )  are functions of z N  and i # k ,  relation 
(44),is in contradiction with  (43),  and  the necessity of the 
rank  being  equal to N is thus proven. 

That this condition is also sufficient is shown  below. If 
M > N ,  we first reduce  the  system  to N channels  which 
correspond to  a nonsingular A( z N )  matrix.  We  then  make 
the  following  choice of the synthesis filters [see (39)]: 

[ g ( z ) ] '  = [1 0 0 - * .  O ] H * ( z )  co [C,(Z")] .  

(45 1 
Using (39) and  (45), we see  that  the  output of the  subband 
coder in (24) becomes 

g(z)  = l / N  z - ~  Det [ C s ( z N ) ]  A ( z N )  X ( z ) .  

(46) 
The aliasing has thus completely disappeared. Note that 
the original signal is filtered by a function in z N  in (46). 
Except  for  the  compensation of the  channel effects, the 
solution in (45) is based  on  the  cofactor  matrix of H ,  ( z ) .  
Note  that  such  a solution has  been  proposed by several 
authors 1211, [26], [34], [35]. Next, we consider perfect 
reconstruction. 

Corollary I .  I :  For perfect reconstruction it is suficient 
that the determinant of a  nonsingular  submatrix of C, ( z  N ,  

- H , ( z )  has all its zeros within the unit circle.  In  the case 
of critical subsampling,  this condition is also necessary 
for N = 2  or  for modulated filter banks. 

This condition is sufficient, because  in that case, the 
inverse of the  determinant is a  stable filter. Thus, in (46), 
one  can  use  a postfilter equal to: 

An equivalent corollary holds for all-pass reconstruction 
as  well. 

Corollary 1.2: For all-pass reconstruction (no  ampli- 
tude  distortion), it is suflcient that  the  determinant of a 
nonsingular  submatrix of C, ( z N )  H ,  ( z  ) has no zeros on 
the unit circle.  When  the  subsampling is critical,  the  con- 
dition becomes necessary f0r.N = 2  as well as when  the 
filters are  modulated. 

The condition is sufficient, because  all unstable poles 
of P ( z )  can  be replaced by stable  mirror poles (placed at 
the  same  angle  but  with  one  over  the  norm).  The necessity 
is proved by using  the  fact  that  there  cannot be cancella- 
tion of unstable poles in  the  case' of N = 2  or modulated 
banks (see the  Appendix).  Therefore, zeros of the  deter- 
minant  on  the  unit  circle prohibit all-pass reconstruction 
at least in these  cases. 

After these considerations on  subband  coders, we can 
similarly analyze  the transmultiplexer case.  The equiva- 
lent of theorem 1 is (we  assume  that  the  phase at the  re- 
ceiver is perfectly recovered) as  follows. 

Theorem 2: Crosstalk-free reconstruction in  a  trans- 
multiplexer is possible if and  only if both  the  channel fil- 
ter  matrix [ C, ( z N )  ] and  the synthesis filter matrix 
[ H ,  ( z )  ]  have  rank A4 (the  number  of input signals). 

It follows immediately  that N (the  upsampling at the 
input) has to  be  greater  or  equal  to M (the  number of input 
signals),  a result that is again  clear  from  a  sampling the- 
ory point of view. 

The necessity for  the  rank size is verified as follows. 
From  (31),  we  know  that T,( z N )  has  to  be  diagonal  in 
order to cancel  crosstalk.  Since it is an M X M matrix, 
its rank  therefore  has  to  be  equal  to M .  Since  the  rank of 
a  product is upperbounded by the  minimum  of  the ranks 
of the  terms of a product [ 121, we  get, with (3 l),  

rank [ T , ( z N ) ]  5 Min [rank [G,(z)], 

rank [ c,(z)], . rank [ ~ , ( z ) ] ] .  (48 1 
Now, if either C,( z )  or H ,  ( z )  have  rank  smaller than M, 
then T,( z N )  will also  have  a  rank  smaller  than 'M and thus 
cannot  be  diagonal.  Note that C,(z) has either  rank 0 
( C (  e)  = 0)  or N .  To show  that  the condition is sufficient, 
we assume that M is equal to N (otherwise,  one  can  either 
add  dummy input signals or reduce  the  upsampling  fac- 
tor). Now, using the following synthesis filters [see.(39)], 

Therefore,  the output signal is equal to the input within a 
delay. In order for the condition to be necessary, one has  leads  to  the  following transmission matrix as can be ver- 
to show that  an unstable pole of P ( z  ) in (47) cannot  be ified  [38]: 
cancelled by a zero of the  cofactor matrices in  (45).  In T,(zN)  = Det [ C , ( z ) ]  z"A(z") * 1. 
that  case, P ( z )  would be unstable and thus perfect recon- 
struction impossible. The necessity of  the condition is Corollaries similar  to  corollaries 1.1 and  1.2  hold also in 
shown in the  Appendix  for two important  cases, that is,  the context of the  above  theorem  and define the possibility 
for  two  channel  systems  and  for  the  case  where  the filters of perfect and  all-pass reconstruction in transmultiplex- 
are  obtained by modulation  from  a  single  prototype filter. ers.  Fig. 6 shows the potential of  the  coherent crosstalk 

. ,  

( 5 0 )  
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traditionnal approach 
4 useful bandwidth < channel bandwidth 

Band 1 Band2  Band3  Band4 

new method 
4 useful bandwidth = channel bandwidth 

Band 1 Band 2  Band3 Band 4 

(b) 

Fig. 6 .  Duality of subband coding  and  transmultiplexing  allowing  the  use 
of the  full  channel  bandwidth for transmission  in  transmultiplexers.  (a) 
Crosstalk  suppression  using  guard  bands  and sharp passband  filters.  (b) 
Crosstalk  suppression  using  filters  that  cancel  the  crosstalk at the  re- 
ceiver. 

annulation in transmultiplexers that is achieved  with  the 
filters in (49). In  a conventional  FDM  scheme, there are 
guard  bands  between  the  channels in order to avoid cross- 
talk (thus:the channel  bandwidth is not fully used). In the 
new scheme,  the full bandwidth  can  be used even if the 
band-pass filters are not perfect, since the crosstalk will 
be cancelled at the receiver. 

In  order to explore the similarities and differences be- 
tween  subband  coders  and transmultiplexers in more de- 
tail, we assume in the following that the channels are ideal 
( C, ( z N )  = C, ( z )  = Z ) and  that  the  sampling  rate  change 
is critical ( M  = N ). In that  case,  the following  theorem 
holds. 

7beorem 3: Aliasing and crosstalk cancellation are 
equivalent if and  only if the product  of the analysis  and 
synthesis filter matrix  (one  being transposed) is equal to 
a function in Z" times the identity matrix. 

In order to have  both  aliasing  and crosstalk cancella- 
tion, we require that [from (25)] 

= Diag [ F ( z )  F (Wz)  + * * F (  W"-'z)] (51a) 

The necessity can  be  shown by contradiction: if F ( z )  in 
(51a) is not a function of z", simple  counterexamples 
show that the  product in (51b) is not diagonal (note that 
H,,, ( z )  and G,,, ( 2 )  are  never  diagonal).  The condition is 
also sufficient because in that case,  the  matrix  product  is 
commutative [29], and  thus, (51a) and (51b) are equiva- 
lent. 

An interesting point to note is in which respect the 
solutions for  subband  coders  and transmultiplexers can be 

different. Choosing g ( z  ) as in (45) or (49), 

g ( 2 )  = , [ H * ( z ) l T  [ l  0 0 * * 01' ( 52a 1 
gives the desired equivalence  since 

[G,,,(z)]' * H,(z) = H,,,(z) * [G,,,(Z)]' = z-"A(z") I .  

(533) 

Now,  the set of  all  other solutions achieving aliasing can- 
cellation in subband  coders [given a certain H, ( z ) ]  are 
obtained  from 

{ g h ) )  = S ( d   g ( z )  (53  j 
where S ( z )  is an arbitrary filter. The set of all solu- 
tions achieving crosstalk cancellation in transmultiplexers 
[given H ,  ( z ) ]  is 

{ g , ( z ) }  = Diag [SO(;") SI ( z " )  * * SN- 1 ( z " ) ]  * g ( z ) .  

(54 1 
This highlights the difference between  the reconstruction 
filters for subband  coders and transmultiplexers. In the 
first case, an arbitrary filter can  be put in cascade  with all 
reconstruction filters, while in the  second case, each out- 
put can  have  a different filter in cascade,  but  only  a filter 
in z N .  Nevertheless,  in  both  cases,  the basic solution is 
obtained by evaluating the partial inverse H,(z ) ,  that  is, 
mainly inverting D (  z N )  and evaluating the  cofactor  ma- 
trix of N p ( z N )  in (36) or (37). 

Both theorems  1  and 2 have  used the rank of the filter 
matrix, and we will give  another  example to show the 
fundamental nature of the notion of rank. If the rank of a 
filter matrix  corresponding to an analysis bank  subsam- 
pled by N (for  example,  used in short time  spectrum anal- 
ysis) is equal to N ,  then  two different input signals pro- 
duce different output signals.  This is equivalent to say that 
the application realized by the filter bank is an injection 
[28]. Otherwise, if the  rank is lower than N ,  whole classes 
of input signals will produce  the  same  outputs, as can  be 
verified. 

In  order to summarize this important  subsection, we re- 
call that,  given  a filter matrix with rank equal to the  sam- 
pling rate change,  one  can  always annihilate crosstalk or 
aliasing in transmultiplexers and subband  coders. Both 
problems  are basically equivalent,  since differences are 
reduced to some possibly different "scaling" factors 
(postfilters). Perfect or all-pass reconstruction was shown 
to depend on the location of the zeros of  the determinant. 
Thus,  and quite naturally, the  two basic characteristics of 
a multirate filter bank are  the  rank and the determinant of 
the associated filter matrix. 

C. Minimum Delay Solutions 

Both in subband  coders  and in transmultiplexers,  the 
delay from input to output due to the filtering (which is 
often done with linear  phase filters) can  be problematic. 
It is thus interesting to note that the minimum delay as- 
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sociated with  an N channel  system is equal to N - 1 sam- 
ples (of the  high  sampling  rate). Of course,  we restrict 
ourselves to causal filters only. 

The  above assertion is easily proved by looking at (39). 
As 'already noted,  a multiplication by z P N +  I in (39) would 
be sufficient to  obtain  a causal filter matrix H ,  ( 2 ) .  In that 
case  and  assuming perfect channels,  the output of the sub- 
band  coder  becomes [following (46)] 

R(z )  = 1/N * z - ~ "  * A ( z N )  * X('Z) .  ( 5 5 )  

If A ( z N )  is made equal to one (and we will see  later how 
to achieve this goal), then  we  obtain  a  minimum delay 
system. If A ( z N )  is minimum  phase, it can  be cancelled 
out  and the resulting system  has  also  minimum  delay. 
These results carry over to transmultiplexers as well (fol- 
lowing  theorem 3), but the  subsampling at  the receiver 
has  to  be  advanced  by  one  sample  in  order  to  be  in  phase 
with the reconstructed signals.  That  the delay cannot  be 
lower  than N - 1 follows from  the  fact  that  otherwise 
H, ( z )  in (39) becomes  noncausal,  a  fact that can be  ver- 
ified on  simple  examples.  Note that we  proved  a  lower 
bound for  the delay of  multirate filter banks, but that noth- 
ing was said about  the quality of the resulting filters. 

D. Finite Impulse  Response Solutions 
FIR filters are  often  desirable  because of three  major 

reasons: they are  always  stable,  their  numerical properties 
are  good,  and they can  achieve  linear  phase  behavior.  In 
the case of filter banks  with reconstruction, FIR filters 
have  also  the  advantage that they do not realize implicit 
pole/zero cancellation between physically distinct filters 
[35]. We  talk about  FIR solutions when all involved fil- 
ters  are  FIR,  and  thus,  an  FIR filter matrix is  one  in which 
all  elements  correspond to FIR filters. 

For perfect reconstruction, it is sufficient that the de- 
terminant A ( z N )  is a  pure delay (we still assume perfect 
channels). This condition becomes  necessary in the case 
of N = 2 and  when the filters are  modulated (see the Ap- 
pendix). That  the condition is sufficient is clear  from (46) 
and (50) for subband coders and  transmultiplexers, re- 
spectively. In  the  next  section,  we will show how to 
achieve the condition of a  determinant  being equal to  a 
delay. 

That  linear  phase solutions allowing perfect reconstruc- 
tion exist was  shown in [35] and [38]. However, restric- 
tions are  put  on  the filter lengths  as well as on  the 
symmetries of the filters involved. For  example, in the 
important  case of two  channel  systems, it is shown that 
linear  phase filters for perfect reconstruction exist only if 
the filter length is even  and if the  two filters have different 
symmetries. 

E. Modulated Filter Banks 
An important  special case  appears  when  the filters of a 

filter bank  are  obtained by modulation  from  a single pro- 
totype filter, that  is, 

Hi(Z) = H,(W'z) (56) 

365 

where H,( z )  is the  prototype filter. In  that  case,  the filter 
matrix is circulant and of the form  (assuming  critical sub- 
sampling) 

H,( wz) * * * H,( WN-Iz)] 

Because of its circulant form, H, ( z  ) can  be  diagonalized 
with  Fourier  matrices,  and  this in the following  way 1301, 
1351, 1381 [where  we  assume that the prototype filter 
H,(z) is written as N , ( z ) / D ( z N )  following (32)]: 

H,(z) = l / D ( z N )  - F-' * L ( z )  F (58a) 

where 

L ( z )  = N - J 

(58b 1 
Note that NTi ( z N )  is  the ith polyphase  component of the 
prototype filter numerator [after expansion to the canoni- 
cal form in (33)]. Because of this factorization, it is shown 
in the Appendix  that  the zeros of the  determinant A ( z N )  
are equal to the zeros of the  various  polyphase  compo- 
nents NTi ( z  N ) ,  because 

N -  1 

A(z") = N N  N , ( z N ) .  (59) 

Thus, H ,  ( z )  has  rank N if no  polyphase  component is 
equal to  zero,  a result which is quite  clear.  Similarly,  the 
inverse of H , ( z )  is stable if and  only if all  polyphase 
components  are  minimum  phase  (see corollaries 1.1 and 
1.2 as well as  the  Appendix). 

As a  conclusion to this  section,  we first note that a use- 
ful factorization of the filter matrix  was  given in  (36) and 
(37). Then, basic properties of  multirate filter banks  were 
derived by using the rank of the filter matrices,  a notion 
that is quite  fundamental.  The  basic result is that aliasing 
and crosstalk can  always be cancelled with  stable filters, 
while perfect or all-pass reconstruction is dependent  on 
the zero locations of the  determinant.  It  was  then  shown 
that the minimum  delay of an N channel  system is N - 1 
samples.  FIR  and  linear  phase  solutions  were  addressed 
next,  and finally, it was  shown how the filter matrix  could 
be diagonalized  when the,filter bank is made up of mod- 
ulated filters. 

i=O 

V .  SYNTHESIS OF FILTERS FOR FILTER BANKS 
The  framework  developed so far will be used  below to 

investigate the  design  of filters in the context of filter 
banks. As it turns  out,  this is a different problem  than  the 
design of a single filter, especially due  to  the  central  im- 
portance  of the  determinant  of  the filter matrix; In its most 
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general form and for an  analysis/synthesis system with M 
channels,  one  has  to  design 2M filters under  the constraint 
of achieving a certain input/output relation (usually as 
close to a certain delay as possible). 

The  size of the problem  can be reduced in certain par- 
ticular cases,  for example, in modulated filter banks (only 
one  prototype  has to  be designed) or if only the analysis 
filters are considered.  Nevertheless, this can lead to  draw- 
backs as  shown, for example,  in [26] where passband 
analysis filters lead to  synthesis filters with large out-of- 
band components.  While this causes no problem when the 
channels are perfect, a deterioration of the  channel  char- 
acteristics  (like quantization in subband coding) will pro- 
duce  poor reconstruction if the synthesis is not passband 
as well (especially,  aliasing will appear  [38]). 

Below,  three design methods will be briefly presented. 
The first one, called the factorization method [39], [34], 
[35] is suited for two channel FIR  systems  and  achieves 
perfect reconstruction. The  other  two methods can  be used 
for arbitrary size FIR  or  IIR filter banks. The complemen- 
taryfilter method [35], [38] allows  perfect reconstruction 
by choosing  the  last of the M filters appropriately and fi- 
nally,  the simuhaneous  optimization method [ ll], [38]  is 
a more classical approach  based on the  simultaneous  de- 
sign of the filters and  the resulting determinant.  Note  that, 
in  the  following, we consider only filter banks which are 
critically  sampled (that is, M = N).  

A .  Factorization Method 
In  the two channel FIR case,  the filter matrix H&) can 

be written as 

(60) 

When the synthesis filters are chosen so as to cancel 
aliasing, that is, following  (52),  the input-output relation 
equals 

= -$ [H, ( z )  HI( - z )  - H,( - z )  H,(z)] . z-I .  

(61 1 
Introducing  an auxiliary product filter P ( z )  = H o ( z )  
H , (  - z ) ,  it  is easy to see that the reconstruction in (61) 
will be  perfect if (and only if when IIR filters are ex- 
cluded) P( z )  has arbitrary coefficients for the even powers 
of z ,  but only a single  nonzero coefficient for the  odd pow- 
ers of z .  The design method consists in choosing P ( z )  
with the  given  properties  and then factorize  it  into H o ( z )  
and H I (  - z ) .  Given that P ( z )  is a half-band low-pass fil- 
ter,  the factorization is  done  such that H o ( z )  and H I (  z )  
are good low-pass and high-pass half-band filters, respec- 
tively.  Note that the first perfect reconstruction solution 

proposed in [24] is a factorization into maximum and min- 
imum  phase  components. 

Problems with the factorization method are of two 
kinds.  First,  the  number  of possible factorizations of P ( z )  
into H,(z)  and H , ( z )  grows exponentially with the num- 
ber of zeros [38], thus making it rapidly impossible  to 
check  the quality of the various factorizations. Assume a 
length4 FIR filter P ( z ) ,  L being odd.  The  number of 
possible factorizations of its L - 1 zeros into equal  size 
groups  of ( L  - 1 ) / 2  zeros  is  equal  to [38] : 

where we used the  Stirling formula for approximating fac- 
torials.  For  example, if L = 3 1, the  number  of  length- 16 
filters that can be obtained is  over 6000 (assuming that 
zeros  appear  in  conjugate pairs that cannot  be split in  or- 
der  to keep  the filters real). If we  consider only linear 
phase filters (zeros appear  in groups of 4), there are still 
35 solutions. 

The second problem appears when the size  of P ( z )  is 
small. In this case,  it  is difficult  to obtain good factor- 
izations, especially when one  desires  linear  phase solu- 
tions.  Fig. 7 shows two possible factorizations of a length- 
15 filter P ( z )  shown  in  part  (a).  Parts  (b)  and (c) give a 
factorization into  minimum/maximum  phase  components, 
respectively,  while  parts (d) and (e) show  the  linear  phase 
factorization which yields poor filters as  can  be seen.  The 
intrinsic problem is that  while  the product of two  good 
low-pass filters yields a good  low-pass filter, the recip- 
rocal statement is not  true.  This remark explains why the 
factorization of P ( z )  can be problematic. 

B. Complementary  Filter  Method 
In this method [35], [38],  after  choosing  the N - 1 first 

filters  of a size N bank,  we calculate  the  last filter in such 
a way that the determinant A ( z N )  equals a pure delay, 
thus guaranteeing perfect reconstruction.  The method is 
suited for both FIR  and IIR banks of arbitrary size, but 
we will only detail the  FIR case here. Assuming that all 
filters are  FIR  and of length-l,  one can verify that A ( z N )  
has at most L - N + 1  nonzero coefficients. After a rea- 
sonable choice of the N - l first filters, the constraint of 
the  determinant  being equal to a delay leads  to L - N + 
1 equations for  the coefficients of  the  last filter. One  can 
therefore put N - 1 additional constraints on this last fil- 
ter. Note that the resulting set of equations is, in general, 
solvable [35]. This method can  also  be applied to  linear 
phase filters, in which case  the number of equations is 
halved. 

While perfect reconstruction is again guaranteed,  the 
problem with this method lies  in  the fact that the last, 
complementary filter can be of  poor quality due to the  fact 
that it is obtained by solving a system of equations. A 
typical example  is  given  in Fig.  8, where the  complemen- 
tary filter to the 32-tap low-pass filter from [l I]  was cal- 
culated. While  the reconstruction is now perfect (which 
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Fig. 7. Amplitude of the transfer functions  on  the unit circle of P(z),  H,(z), 
and HI( -2) in the  factorization methods where P ( z )  = H&z) HI( -z). 
(a) Initial length-15 filter P ( z j  to be  factored. (b) Minimum phase filter 
H,(z). (c) Maximum  phase  filter HI( - z ) .  (d) Linear  phase  filter  H,(z). 
(e) Linear  phase  filter HI( - z ) .  

(b) 
Fig. 8. Example  of a complementary filter. (a) Original  32-taps  low-pass 

filter from [l  11. (b) Complementary  high-pass  filter  allowing  perfect re- 
construction. 

was not the  case  with  the original QMF scheme,  where 
the high-pass filter is simply  the  low-pass filter modulated 
by ( - 1 ) ,I ) , we see that the  complementary high-pass fil- 
ter  is of poor  quality. 

To obtain better  complementary filters, one can  either 
relax the constraint of the determinant  being equal to  a 
delay,  or  take  a  longer  complementary filter (in which 
case,  more constraints can  be  imposed).  Note  that,  often, 
the complementary filter corresponds to a  channel  which 
is not very  important  (for  example,  in  subband  coding, 
the  channel  corresponding to the highest frequencies) and 
thus, its poor quality is not of great  consequence.  Finally, 
this  method  allows to easily obtain  minimum delay solu- 
tions (see Section IV-C). When  choosing  the coefficients 
of the  determinant  (actually,  choosing  which one should 
be different from  zero), it is sufficient to take  the first coef- 
ficient equal to a constant (and  all others equal to zero) in 
order  to  obtain  a  minimum delay solution.  The resulting 
complementary filter is obviously  modified  and usually 
worse  when  compared to a solution producing  a higher 
delay. 
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C. Simultaneous Optimization Method 

This is simplest  and  most  flexible  method  and it is  also 
applicable to arbitrary  size  FIR or IIR filter  banks.  One 
optimizes  simultaneously  the  various filters as well as  the 
determinant by minimizing a cost  function.  This  cost 
function is  the squared  error when comparing the current 
filters and  determinant  to  the  desired filters and  determi- 
nant. The flexibility is obtained by weighting  the  errors 
from  passbands,  stopbands,  and  determinant  indepen- 
dently.  Note  that the desired  determinant  can be chosen 
so as to reduce  the input-output delay  to a minimum. 
While this method does not give  an  analytical  solution to 
the  filter  design  problem  and  that  perfect  reconstruction  is 
usually only  approached,  it  does not have  any of the  draw- 
backs of  the  other  methods  presented. 

As a conclusion  to  this  section  on filter design  for filter 
banks,  we recall once  again  the  importance of the  deter- 
minant &the filter matrix.  In a first approach, a product 
filter yielding a determinant  equal  to a delay is  factored 
to  produce  the  two filters of the  bank. The second  ap- 
proach  calculates  the Nth filter from  the  given N - 1 first 
one in  such a way that  the  determinant  reduces.to a pure 
delay.  Finally, in the  last  method  presented,  the  deter- 
minant  is one  of the  parameters  to  be  optimized. 

VI. COMPUTATIONAL  COMPLEXITY OF FILTER BANKS 
This  section  overviews briefly the  computational  com- 

plexity issue in filter banks,  especially  in  the  analysis/ 
synthesis  case.  Several  methods  for  complexity  reduction 
in  the  case  of  filter trees and  modulated filters are indi- 
cated.  Most of the  discussion  is  qualitative  for  concise- 
ness,  and  we  refer  the  reader  to  the  literature  for  more 
details.  Again,  we restrict ourselves  to  the  important  case 
of critically  sampled  banks ( M  = N ). 

A. Analysis  versus Synthesis Complexity 
Given a certain  analysis  bank,  we  have  seen that the 

synthesis filters in a subband  coder  are  basically  chosen 
from  the  cofactor  matrix of the  analysis filter matrix  [see 
(4511, and  this in order  to  cancel  aliasing.  The  same  holds 
for  transmultiplexers, with the role of analysis  and  syn- 
thesis filters simply  reversed.  In  the  following,  we will 
only  consider  the  subband  coder  case,  since  all results 
carry  over to transmultiplexers  by  duality. 

The  basic  problem, from a computational  complexity 
point of view, is that  the filters obtained  from  the  cofactor 
matrix are in  general much more  complex  than  those of 
the  original  matrix. As a simple  example,  assume  that all 
analysis filters are FIR and of length La. In  that  case,  the 
length L, of the  synthesis filters derived  from  the  cofactor 
matrix  is  upperbounded by 

L, 5 (N - 1) La. (63) 

Even if some of the coefficients are  zero  (or  can be ne- 
glected as being  too  small),  the  complexity of the  synthe- 
sis filters is in general  higher  than that of  the  analysis fil- 
ters when N > 2. A notable  exception  appears when the 

TABLE I1 
NUMBER OF MULTIPLICATIONS  AKD ADDITIONS FOR EACH NEW INPUT 

SAMPLE IN AN ELEMENTARY 2 FILTER BANK (SUBSAMPLED BY 2) 

RlFillter length L H o ( z )  ti, (2) mults adds 

1) arbitrary arbitrary Ho(z) HI@) L L 

2) linear phase arbitrary Ho(z) H,(z) U2 L 

3) modulated arbltrary H(z) H(-z)  U2 L !2 

4) mod. lin. phase even H(z) H(-z) U2 L12 

5 )  mod. Ihn. phase odd H(z) H(-z) L’4 LIZ 

6 )  mod. lin. phase odd H(z) li(-z) U8 Li4 
half band 

7) mlnlmax phase even H(Z)  z - L + ’ H ( z - ~ )  3u4 5u4 

Remarks: 
4-6) from [E] 
6) the complexity of the correction fllter [B] has been neglected. 
7) from [9] 

filters are  modulated  and  have minimum phase  polyphase 
components  (see  also  the  Appendix). In that case,  these 
polyphase  components  can be inverted [35] ,  [38], and the 
complexity  of the synthesis  is  equal to that of the  analysis. 
However, if the  polyphase  components  are not minimum 
phase,  one  has  to  use  the  cofactor  matrix  for  deriving the 
synthesis  filters.  These  are  also  modulated,  but  the  length 
of the  prototype filter is increased when compared  to  the 
analysis filters. Another exception is the so-called pseudo- 
QMF filters [22], [17], [18], [2], [13], which achieve 
good aliasing  cancellation  while  leading to equally  com- 
plex analysis  and  synthesis filters. 

B. Methods to  Reduce  the Computational Complexity of 
Filter .Banks 

Interestingly,  the  number of operations  used in filter 
banks  is  usually of the  same  order  as  the  number  used by 
a single filter, and not at all N times higher  as could be 
expected.  There are  two  main  reasons  that  contribute  to 
this fact.  First,  the  outputs  of  the filter bank  are  subsam- 
pled  by N ,  and  therefore,  only one  out of N outputs  has 
to be computed.  This  subsampling  can  be  used, both in 
time  and  frequency  domain  implementations, in order to 
reduce the  number  of required operations.  Second, most 
filter banks have  some  special  structure  that can be taken 
advantage of,  the  two most well-known  cases  being  the 
tree-structured and  the  modulated filter bank. 

In  the first case,  the  tree-structured filter bank, common 
pole,  and  zeros  are  computed  simultaneously  for  the var- 
ious filters [32]. Usually,  the  elementary block of a tree 
is made up of two  filters,  and  Table I1 gives  the  number 
of operations  for  an  elementary  two filter block  (subsam- 
pled by 2) using different filters.  Since  the length of the 
filters is normally halved at  each  stage of the  tree, a con- 
ventional QMF tree with N = 2p channels  and  an initial 
filter length of L uses,  for  each new input  sample,  about 
181: 

L ( 1 - 2!’ ) multiplications and additions. (64) 
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When  computing  a filter tree in the  Fourier  domain,  one 
can  use  both  the  subsampling  and the modulation (in the 
QMF case) in order to reduce the computational  complex- 
ity,  but at the  price of a  more  involved  structure. As an 
example,  take  a binary tree of depth 4 (16 filters) with 
QMF filters of length 128,  64,  32, and 16, respectively. 
While  a  time  domain  approach takes 120 multiplications 
and additions for  each  new input [from (@)I, a  DFT ap- 
proach (with FFT’s of length 1024)  needs only 21 mul- 
tiplications and 54  additions [38]. 

In the  second  important case-the modulated filter 
bank-it is well known that the computational  complexity 
can be drastically reduced by the  method  of  the  polyphase 
network  combined  with  a  fast  transform [I]. Instead of 
using the classical method,  one  can  evaluate  the poly- 
phase  network  with  Fourier  transforms [16], or calculate 
the  whole filter bank in\the transform  domain 1381. Both 
of these  methods  lead to two-dimensional  transforms 
which  can be evaluated  very efficiently [ 151. Therefore, 
they lead  to the lowest  known  number of operations for 
filter banks, but at the. cost of rather complex structures 
and  large  computational  delays. 

For  the  sake of comparison,  consider  a critically sam- 
pled bank of 16  length-128  complex FIR filters. The fil- 
ters  are  obtained  from  a single prototype by modulation 
with the 16 roots of  unity.  For  each new complex input 
sample,  the classical polyphaselFFT  approach uses about 
25 multiplications and  47 additions to produce the out- 
puts. Assume now an evaluation using  blocks of 256 input 
samples.  The  method  from [ 161 requires about 1 1  multi- 
plications and 53 additions,  while  the  complete evaluation 
in the  Fourier  domain 1381 takes about  the  same  number 
of multiplications but slightly more  additions.  Note  that  a 
single length-128  complex  filter,  subsampled by 16, takes 
already .24 multiplications per  new input sample, thus 
showing the  great efficiency of the  above described meth- 
ods.  Note  that the pseudo-QMF filters also belong to  the 
class of efficient filter banks,  since they  can be imple- 
mented  with  a  polyphase  network  and  a fast transform (a 
discrete cosine  transform). 

In conclusion to this brief overlook  on  the  computa- 
tional complexity, we first recall  that aliasing cancellation 
can require more  complex filters for  the synthesis than  for 
the analysis (except for N = 2  or  for special cases  like  the 
pseudo-QMF filters). Concerning  the  computational  com- 
plexity itself, it was indicated that the  number  of opera- 
tions required for  a given  bank  can usually be brought 
down to the order of a  single filter. This is possible by 
taking advantage  of  the  subsampling  and  the  structure of 
the filter bank. 

VII.  CONCLUSION 
First,  the  two  generic multirate filter banks  used for  the 

analysis and synthesis of signals were analyzed. This leads 
naturally to  the introduction of. filter matrices of size M 
by N ,  where M is the  number of filters and N the subsam- 
pling factor  (which  leads to N modulated versions of the 
original filters and  signals).  Using  these filter matrices, it 

was  easy to express the output of  the  two physical systems 
that use  multirate filter banks  (subband  coder  and trans- 
multiplexer). The conditions for reconstruction (aliasing/ 
crosstalk-free or perfect) have  then  been  stated. 

Using properties of the filter matrices (rank,  determi- 
nant,  stability,  causality),  fundamental properties of sub- 
band  coders  and transmultiplexers were  demonstrated. 
Essentially,  the  rank of the filter matrix  has to  be equal to 
the  sampling rate change in order to allow  aliasing/cross- 
talk  free reconstruction. For  perfect  reconstruction, it is 
further needed  that the determinant is minimum  phase,  a 
property proven to be  necessary  in  two  important  cases 
(two  channel  bank  and  modulated filter bank).  Note  the 
following  analogy: in the  single filter case,  the filter itself 
has to be  minimum  phase if one wants to reconstruct the 
original signal from the  output.  Similarly, in the multirate 
filter bank case,  the  same role is played by the  determi- 
nant of the filter matrix. The central role of the determi- 
nant  appears  thus  quite  clearly.  A  further  important  prop- 
erty is that the minimum delay of an  N-channel  system is 
only N - 1 samples.  Linear  phase  banks  allowing perfect 
reconstruction and  modulated filter banks  were also con- 
sidered. 

Concerning  the synthesis of filters for filter banks, it 
was  shown  that  the  design is a tradeoff between individual 
filter quality, reconstruction quality,  and  input-output de- 
lay.  Three  design  methods  were  presented:  the factor- 
ization method (suited for N = 2, FIR  banks),  the  com- 
plementary filter method,  and  the  simultaneous opti- 
mization  method (both for arbitrary size  FIR  or IIR 
banks). 

Finally,  the  computational  complexity of multirate fil- 
ter banks  was  considered.  It  was  noted  that  the  aliasing/ 
crosstalk cancellation requires in general  more  complex 
output filters (except in special cases  like  the  two  channel 
bank or  the pseudo-QMF filters). Then, different methods 
for  complexity reduction were  reviewed,  showing that the 
number of required operations is in general comparable to 
the one required by a  single filter. 

In  conclusion, it was  shown that multirate filter banks 
are quite different from  single filters, thus requiring a 
novel analysis method  (based  on matrices). Basic results 
can be proven  by  using  well-known  tools  from  linear al- 
gebra.  The synthesis of filters and  the reduction in com- 
putational complexity call as well for original solutions. 
Finally, it seems that the  approaches  and results presented 
in this  paper  and other related publications set a  clear  ba- 
sis for filter bank  problems,  on  the  one  hand,  and  open, 
on the other  hand,  a  large  horizon  for  further  develop- 
ments. 

APPENDIX 

In this  Appendix,  we  prove that perfect reconstruction 
is possible if  and only if the  determinant of the filter ma- 
trix is minimum  phase,  and  this in the  two  channel case 
and in the  modulated filter case.  The  fact that the condi- 
tion is sufficient was  shown  in Section IV.  The necessity 
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is  shown by proving  that, when evaluating  the  inverse that 
is required for perfect  reconstruction  and  given below 
(causality  is  neglected  here): 

there  cannot be a pole/zero  cancellation  between  the  ele- 
ments  of  the  cofactor  matrix  and  the  inverse  of  the  deter- 
minant.  Therefore,  all  zeros of the  determinant will be 
poles of  the  synthesis  filters,  and  thus, a stable  synthesis 
requires a minimum phase  determinant (if the  determinant 
has  poles,  they  are  within  the unit circle  since  the  analysis 
filters are assumed to be stable). 

A. Two Channel Case 

unstable  is  the  inverse of Np ( z 2 ) :  
In (38), we  have  seen that the  only  inverse  that  can  be 

where 

A(z’) = f&(z2> Hl1(z2) - Hol(z’) Hlo(z2) .  (A31 

We assume now that there are  no  common zeros  between 
the different elements  of Np ( z2). Otherwise,  these  com- 
mon zeros  can be factored  out  and will appear  in  the  in- 
verse [38]. Consider now the first element e,, of the  in- 
verse: 

em = K ~ ( Z ’ ) > / ( H ~ ~ ( Z ~ )  ~ l l ( z ’ )  - ~ o l ( z ~ )  ~ d z ’ ) ) .  

(A4 
In  order to cancel  an  unstable  pole p i  of  the  inverse of the 
determinant  (thus, -pi will also  be a pole),  this  pole  has 
to be a factor  of H I  1(z2), and  thus, eoo can be rewritten 
as 

B. Modulated Filter Bank Case 
When inverting  the filter matrix in ( 5 8 ) ,  it  can  be ver- 

ified that the  prototype filter for  the  synthesis  is  given by 

G7r (2 

r 1 

(A6) 

We will prove  that  all  the  zeros of the various polyphase 
components N T j ( z N )  are  poles of G,(z). To this  end, we 
analyze  the  poles of the  following  function f (x): 

,-N+2 1 

(A7 1 
Except for a pole  at  the  origin, G,(z) and f ( x )  have  the 
same  poles. We did not consider  pole/zero  cancellations 
due  to D ( z N )  because  these  poles would be inside  the unit 
circle  (the  prototype filter H, ( z )  in (56) is stable) and do 
not influence our stability analysis.  Assume first that the 
various N,,(x”) have  no common or multiple  zeros  and 
that there are  no zeros at  the origin (this last  case  does not 
cause  stability  problems  anyway). We can  write NTi ( x N )  
as 

k : - 1  N - 1  

where W = e-j2,IN and ki is  the  length of the ith poly- 
phase filter (divided by N ) .  A rational  function with a 
denominator  degree  strictly  greater  than  the  numerator  de- 
gree  has a unique  partial  fraction  expansion.  Thus, f ( x )  
can be uniquely written  as 

N - 1  k , - 1  N - 1  

f ( x )  = c c c Pijl 

- 1) 
i - 0  j = o  1= ,  (wlp. .x- l  . (A91 

II 

Since  all poles pij  are different from  each  other,  there  can- 
not be  annulation  between  two  terms,  and it is  thus suffi- 
cient to prove  that all puol’s are different from  zero  in  order 
to show  that all Wbij ’s  are poles off (x). The expression 
of the pijl’s is  given  by 

m = O , # l  ([WIPJIWrnpij - 1) n=O, IT + j  ( [pU]-n[p i l ]n  - 1 )  

Since  we assumed  all pij’s different from  each  other  and 
Since ( 1 - zV2p;) is  also a factor  of  the  denominator of from zero, it follows  that  the yijr’s are all different from 
eoo, it is  thus  also a factor of H o 1 ( z 2 )  HIo(z2>, that is,  zero, and  thus,  each pii is a pole  of f ( x ) .  It is easy to 
either  of Ifo1( z 2 )  or Hlo(z2). But this  is in contradiction  check  that if the  pole pii has a multiplicity K in a certain 
with our assumption that the  various  elements had no  polyphase filter, it will lead to the  equivalent  number of 
common factors.  Therefore, a pole/zero  cancellation in poles in f ( x ) .  
(A4) is impossible,  and  the necessity of the minimum The interesting  case  appears when there  are common 
phase  condition  for  the  determinant  is  thus  proven.  zeros  between different polyphase filters NTi(xN) be- 
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cause,  then,  there  could  be cancellation by summation. 
That  this will not happen is shown  below.  Assume  a  com- 
mon zero p c  between Nnm ( x N )  and NTH ( x N ) .  We  consider 
only  the  two  terms of f (x)  in  whichp, appears (the others 
are not concerned by a  possible  cancellation). 

X-m 

where N k ,  ( x N )  and Nkn ( x N )  are  the  polyphase  compo- 
nent after division by the  factor  corresponding to p c .  The 
numerator of the  expression in (A1 1) equals 

In order  that  the N poles corresponding to W’p, ( i  = 0 
- N - 1) disappear, it is necessary  that  the  following 

N equations are verified: 

n ( W b c )  = 0 I = 0 - * - N - 1 .(A13a) 

Since m # n,  and  because of the.orthogonality of the roots 
of unity, it is easy to show  that  appropriate  linear  com- 
bination will lead  to  the  two equivalent equations: 

(A14a) 

(A14b) 

and thus,  the Wbc’s ( I  = 0 * - N - 1) have  to  be zeros 
of  the  reduced  polynomials as  well. By recursion, it fol- 
lows that N ? , , ( x N )  has  to  be equal to N n n ( x N ) .  It is easy 
to verify that, in that case,  the unstable poles cannot dis- 
appear (there are  at  least N unstable poles,  and the nu- 
merator  has at most N - l zeros).  The  proof  can  be easily 
extended to  the  case  where  a  zero is common to more than 
2 polyphase filters. 

In conclusion, it was  shown  that  all zeros of the poly- 
phase  components NTi ( z N )  are poles of the synthesis pro- 
totype filter when  the filter bank is modulated.  Since  the 
determinant is  equal  to  the  product of the  polyphase  com- 
ponents  [see (59) ] ,  we  can say that perfect reconstruction 
is possible if and  only if the  determinant  is  minimum 
phase. 
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