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POLYNOMIAL-BASED

INTERPOLATION

FILTERS—PART I: FILTER

SYNTHESIS*

Jussi Vesma1 and Tapio Saramäki2

Abstract. This paper introduces a generalized design method for polynomial-based inter-
polation filters. These filters can be implemented by using a modified Farrow structure,
where the fixed finite impulse response (FIR) sub-filters possess either symmetrical or
anti-symmetrical impulse responses. In the proposed approach, the piecewise polynomial
impulse response of the interpolation filter is optimized directly in the frequency domain
using either the minimax or least mean square criterion subject to the given time do-
main constraints. The length of the impulse response and the degree of the approximating
polynomial in polynomial intervals can be arbitrarily selected. The optimization in the
frequency domain makes the proposed design scheme more suitable for various digital
signal processing applications and enables one to synthesize interpolation filters for arbi-
trary desired and weighting functions. Most importantly, the interpolation filters can be
optimized in a manner similar to that of conventional linear-phase FIR filters.
Key words: Polynomial-based interpolation, Farrow structure, interpolation, sampling rate
conversion.

1. Introduction

In digital signal processing applications general interpolation filters (or simply
interpolation filters) are utilized to evaluate new sample values at arbitrary points
between the existing discrete-time samples. The terms “fractional delay (FD)
filter” and “interpolator” are also used in this context (see, e.g., [7] and [11]).
These kinds of interpolation filters that are considered in this paper have one
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continuous-valued input parameter, called the fractional interval, which can be
used to control the time instant for the output sample.

The discrete-time impulse response of the interpolation filter is determined by
the value of the fractional interval and, in typical applications, it is usually time
varying. This makes it difficult to analyze and design interpolation filters with all
possible values of the fractional interval. A commonly used solution to overcome
this problem is to model the interpolation filter with an analog/digital system
where a continuous-time signal is reconstructed by using a digital-to-analog (D/A)
converter and a reconstruction filter. This reconstructed signal is then sampled at
the desired time instants to obtain the interpolated sample values [3], [12]. A
widely used structure for the general interpolation filters is based on the use of
finite impulse response (FIR) digital filters having a fractional delay (see, e.g.,
[11]). In order to be able to control the time instants for the output samples, a
large number of fractional delay (FD) FIR filters with various delay values have
to be synthesized, and the filter coefficients have to be stored in a lookup table.

Because of the efficient implementation structure, one of the most interesting
class of interpolation filters is the polynomial-based interpolation filters. This
class consists of filters having a piecewise polynomial impulse response. The most
attractive feature of these filters is that they can be efficiently implemented using
the Farrow structure [6]. This discrete-time filter structure consists of parallel FIR
filters with fixed coefficient values. The desired time instant for the interpolated
output sample can be easily controlled by properly weighting the output samples
of these FIR filters by the corresponding fractional interval.

The design methods for polynomial-based interpolation filters can be roughly
divided into two different classes. The first class consists of the time domain meth-
ods, where the approximating polynomial is fitted to the discrete-time samples.
The best known time domain methods are based on the conventional Lagrange
and B-spline interpolations, where the filter coefficients for the Farrow structure
are easily available in the closed form [5], [14]. The problem is that the only
design parameter is the degree of the approximating polynomial. Furthermore, if
there are frequency components rather close to half the sampling rate, then the
approximation provided by these interpolation methods becomes poor.

In the second class of design methods for polynomial-based interpolation fil-
ters, the coefficients of the Farrow structure are optimized directly in the fre-
quency domain [6], [8], [11], [17], [19]. This approach is much more flexible, and
it enables one to design interpolation filters with better filtering characteristics
than those obtained by the conventional time domain interpolation methods. For
example, in [11] Laakso et al. introduced a combined frequency/time domain
synthesis method and, in [6], Farrow suggested a least-mean-square optimiza-
tion of the polynomial-based FD filters. These methods do not allow separate
optimization of the passband and stopband regions of the interpolation filter.

This paper introduces a synthesis scheme for polynomial-based interpolation
filters where the frequency domain characteristics of the input signal can be better
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taken into account than in the above-mentioned methods. The proposed technique
is based on the fact that if the impulse response of the reconstruction filter in
the above-mentioned analog/digital model is a piecewise polynomial, then the
polynomial coefficients uniquely determine the coefficients of the corresponding
Farrow structure. Due to this fact, the design of the overall interpolator can be
converted to that of the reconstruction filter.

One desirable feature of the proposed technique is that the frequency response
of the reconstruction filter can be expressed in terms of the polynomial coeffi-
cients in a manner similar to the expression of a linear-phase FIR filter in terms
of its coefficient values. This makes the optimization of the overall system very
straightforward.

Depending on the application, the reconstruction filter may possess many pass-
bands and stopbands, the desired amplitude and weight functions can be selected
arbitrarily for each band, and the length of the filter and the degree of the in-
terpolation can be chosen independently. The actual optimization can be per-
formed either in the minimax sense using linear programming or in the least-
mean-square sense using techniques similar to those proposed for synthesizing
linear-phase FIR filters. The resulting interpolation filters provide significantly
better frequency domain performances than those based on the use of the existing
design methods.

The outline of this paper is as follows. The general interpolation filter is de-
fined in Section 2 along with the analog/digital system that is used to model
these filters. The Farrow structure for polynomial-based interpolation filters is
reviewed in Section 3. Sections 4 and 5 present the proposed design method for
polynomial-based interpolation filters. It is shown how the impulse responses
of the fixed FIR filters in the original Farrow structure are formed by utilizing
certain kinds of basis functions enabling more efficient implementation than the
original Farrow structure. The resulting structure is the so-called modified Farrow
structure introduced by Vesma and Saramäki in [20]. This structure consists of a
given number of fixed odd-order linear-phase FIR filters that alternatively possess
symmetrical and anti-symmetrical impulse responses, thereby properly exploiting
the coefficient symmetries enables one to reduce the number of multiplies by a
factor of 2 when compared to the original Farrow structure. Furthermore, it is
shown how the filter coefficients are optimized by using either the minimax or
least-mean-square criterion. Some examples are included in Section 6 to compare
the benefits provided by the proposed method over conventional methods. The
concluding remarks are presented in Section 7.

2. Interpolation filters

This section presents a general discrete-time interpolation filter and shows how
this filter can be studied by using the hybrid analog/digital model.
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Figure 1. General interpolation filter with impulse response h(k, µl ), input signal x(n), and interpo-
lated output samples y(l). The input parameters nl and µl are used to determine the time instant t = tl
for the output samples y(l) according to equation (1).
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Figure 2. Interpolation in the time domain. The approximating continuous-time signal ya(t) (dashed
line) is generated by the interpolation process based on the existing discrete-time samples x(n). The
interpolated samples are then given by y(l) = ya(tl ).

2.1. General interpolation filter

Figure 1 shows a simplified block diagram for the general interpolation filter. The
interpolation process in the time domain is illustrated in Figure 2. The idea is
first to form an approximating continuous-time signal ya(t) based on the existing
discrete-time samples x(n) with a sampling interval of Tin = 1/Fin and, then, to
sample ya(t) at the desired time instants denoted by tl to obtain the interpolated
sample values y(l) = ya(tl).

The parameters nl and µl are used to determine the time instant tl for the lth
output sample as follows:

tl = (nl + µl)Tin, (1)

where nl is an integer and µl , which is called the fractional interval, is specified
in the interval 0 ≤ µl < 1. Given the time instant for the output sample tl , these
parameters are determined as [7]

nl = �tl/Tin� (2a)
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and

µl = tl/Tin − �tl/Tin� , (2b)

where �x� stands for the integer part of x .
This contribution concentrates mostly on generating the output sample of the

interpolation filter by using the following convolution:

y(l) =
N/2−1∑

k=−N/2

x(nl − k)h(k, µl), (3)

where N , the filter length, is assumed to be an even integer and h(k, µl) is the
time-varying impulse response of the interpolation filter. Note that these impulse
response values depend on µl .

2.2. Interpolation filters based on the fractional delay filters

A widely used approach to design and implement interpolation filters is to use
FIR [or infinite impulse response (IIR)] filters with a delay that is a fraction of the
sample interval Tin . When using this design approach, the fractional interval µl

is first quantized using K uniformly spaced quantization levels (see [18] for the
effects of the quantization). Then, K different fractional delay (FD) filters having
fractional delay3 values of γ = k/K for k = 0, 1, . . . , K −1 are synthesized (see,
e.g., [11]). In order to have an interpolation filter with an adjustable fractional
interval µl , the coefficients of the FD filters are stored in a lookup table.

The disadvantages of this FD filter approach are that the size of the lookup table
is usually large and the overall system is difficult to analyze because the impulse
responses of the FD filters are determined separately for each value of µl . In order
to avoid the problems of the FD filter approach, the next subsection reviews how
the interpolation generally can be interpreted as a hybrid analog/digital model.

2.3. Hybrid analog/digital model for interpolation filters

Interpolation is basically a reconstruction problem, where the approximating
continuous-time signal ya(t) is reconstructed based on the existing discrete-time
samples x(n). Therefore, a useful way to model interpolation filters is to use the
hybrid analog/digital model depicted in Figure 3 [3], [12].

In this system, the continuous-time signal ya(t) is reconstructed by using a D/A
converter and a reconstruction filter ha(t). The interpolated output sample y(l) is
then obtained by sampling ya(t) at tl = (nl + µl)Tin . If it is assumed that the
noncausal reconstruction filter ha(t) is zero outside the interval −N Tin/2 ≤ t <

3 In order to have a positive delay in FD filters, the fractional delay γ has a different sign than the
fractional interval µl and they are related to each other through γ = 1 − µl .
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Figure 3. Hybrid analog/digital model for the interpolation filter.

N Tin/2, then the lth interpolated output sample can be expressed as (see, e.g.,
[16])

y(l) = ya(tl) =
N/2−1∑

k=−N/2

x(nl − k)ha((k + µl)Tin). (4)

By comparing equation (3) and (4), it is seen that the continuous-time impulse
response of the reconstruction filter ha(t) and the time-varying impulse response
of the interpolation filter h(k, µl) are related to each other as follows:

h(k, µl) = ha((k + µl)Tin) for k = −N/2, −N/2 + 1, . . . , N/2 − 1. (5)

The hybrid analog/digital model of Figure 3 converts the design of the overall
interpolation filter with time-varying impulse response h(k, µl) to that of the
reconstruction filter with time-invariant response ha(t). Therefore, the analog
model can be utilized in the design process of interpolation filters as follows:

(1) Find the continuous-time impulse response of the reconstruction filter ha(t)
so that its frequency response, denoted by Ha( j2π f ), approximates the
given desired response according to some criterion.4

(2) Develop an efficient digital implementation structure based on the convolu-
tion of equation (3) and the relation between h(k, µl) and ha(t), as given
by equation (5). What kind of implementation structures can be developed
depends strongly on how ha(t) is generated.

3. Polynomial-based interpolation filters

The impulse response of a polynomial-based interpolation filter is expressible by
means of piecewise polynomials. The advantage of filters of this kind is that they
can be efficiently implemented using the filter structure introduced by Farrow [6].
This section shows how the Farrow structure can be derived by starting with the
above-mentioned hybrid analog/digital model.

4 In the sequel, ha(t) and Ha( j2π f ) are called the impulse response and the frequency response
of the interpolation filter, respectively.
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3.1. Definition of polynomial-based interpolation filter

For a polynomial-based interpolation filter, the impulse response ha(t) is ex-
pressed in each interval of length Tin by means of a polynomial as follows:

ha((k + µl)Tin) =
M∑

m=0

ĉm(k)µm
l (6)

for k = −N/2, −N/2+1, . . . , N/2−1 and for µl ∈ [0, 1). Here, the ĉm(k)’s are
the polynomial coefficients for the kth interval of length Tin and M is the degree
of the polynomials. It is assumed that ha(t) is nonzero only for −N Tin/2 ≤ t <

N Tin/2.

3.2. The Farrow structure

By using the hybrid analog/digital model of Figure 3, the digital implementation
structure for polynomial-based interpolation filters can be derived by substituting
the impulse response ha(t), as given by equation (6), into equation (4), yielding

y(l) = ya(tl) =
M∑

m=0

vm(nl)µ
m
l , (7)

where

vm(nl) =
N/2−1∑

k=−N/2

x(nl − k)ĉm(k) (8)

are the output samples of the M+1 parallel FIR filters of length N with coefficient
values ĉm(k). In the causal case, the transfer functions of these FIR filters are
given by

Ĉm(z) =
N−1∑
k=0

ĉm(k − N/2)z−k . (9)

The corresponding filter structure, the Farrow structure [6], is shown in Fig-
ure 4. The main advantage of the Farrow structure is that all the filter coefficients
directly related to the polynomial coefficients of the impulse response ha(t) are
fixed. The only changeable parameters are the fractional interval µl and nl , which
depend on the lth output sampling instant. Also, the control of µl is easier during
the computation than in the implementation based on the use of FD FIR filters.
Furthermore, the resolution of µl is limited only by the precision of the arithmetic,
not by the size of the memory or lookup table.

Note that the approximating signal ya(t) is also a piecewise polynomial in
each input sample interval, as suggested by equation (7), and the polynomial
coefficients vm(nl) are obtained from the output of the FIR filters. Overall, the



122 VESMA AND SARAMÄKI
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Figure 4. The Farrow structure for a polynomial-based interpolation filter.

multiplication by µl in the Farrow structure corresponds to the sampling of ya(t)
in the analog model of Figure 3 at t = tl = (nl + µl)Tin .

Note also that in the sampling rate conversion applications, the Farrow structure
offers good anti-imaging properties, making it a suitable structure for cases where
the sampling rate is increased. However, it does not offer good anti-aliasing prop-
erties for applications where the sampling rate is decreased (decimation). A better
solution for decimation is the transposed Farrow structure, where the piecewise
polynomial impulse response is determined not for the input but for the output
sampling intervals [2], [9], [21]. Therefore, the transposed Farrow structure offers
the same attenuation in the aliasing bands as the original structure in the imaging
bands if the same polynomial coefficients are used.

4. Proposed generalized filter class

The main disadvantages of the classical Lagrange and B-spline interpolation
methods are that the polynomial coefficients are derived in the time domain
without utilizing the frequency domain information of the input signal and
that there are very few adjustable parameters, resulting in a small number of
design alternatives. On the other hand, synthesis techniques based on the use
of the FD filters together with a frequency domain optimization suffer from the
drawback that the optimization has to be performed separately for each value of
the fractional interval µl . To overcome these problems, this paper introduces a
general-purpose frequency domain optimization method for polynomial-based
interpolation filters. This method utilizes the hybrid analog/digital model of
Section 2 and enables one to select arbitrarily the length of the impulse response,
the degree of the polynomials, and the desired and weighting functions in the
frequency domain.

This section starts by constructing the generalized interpolation filter with a
piecewise polynomial impulse response. After that, it is shown how the frequency
response of this filter can be expressed in a simple form, enabling a straight-
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forward optimization in the frequency domain using either the minimax or the
least-mean-square criterion. Finally, a modified Farrow structure is introduced.

4.1. Impulse response for the generalized interpolation filter

The impulse response of the proposed noncausal interpolation filter, denoted by
ha(t), is required to meet the following conditions:

(1) ha(t) is nonzero for −N Tin/2 ≤ t < N Tin/2.
(2) N is an even integer (for the case where N is odd, see [1]).
(3) ha(t) is a piecewise polynomial of degree M in each interval nTin ≤ t <

(n + 1)Tin for n = −N/2, −N/2 + 1, . . . , N/2 − 1.
(4) ha(t) is symmetrical, that is, ha(−t) = ha(t) except for the time instants

t = kTin for k = −N/2, −N/2 + 1, . . . ,−1 and k = 1, 2, . . . , N/2.

The desired ha(t) meeting conditions 1, 2, and 3 can be conveniently generated
with the aid of the following polynomials:

f (m, t) =



(
2t

Tin
− 1

)m

for 0 ≤ t < Tin

0 otherwise
(10)

as

ha(t) =
N/2−1∑

n=−N/2

M∑
m=0

cm(n) f (m, t − nTin), (11)

where the cm(n)’s are the unknown polynomial coefficients. The first four poly-
nomials f (m, t) for m = 0, 1, 2, and 3 are shown in Figure 5. By using the
substitution t = (n + µl)Tin for n = −N/2, −N/2 + 1, . . . , N/2 − 1, ha(t) can
be also expressed by

ha((n + µl)Tin) =
M∑

m=0

cm(n)(2µl − 1)m . (12)

By properly determining the corresponding unknowns cm(n), any polynomial of
degree M can be generated in the interval nTin ≤ t < (n + 1)Tin .

What is left is to determine ha(t) to also meet condition 4. This is achieved by
requiring that

cm(n) = (−1)mcm(−n − 1) (13)

for m = 0, 1, . . . , M and n = 0, 1, . . . , N/2 − 1. This condition halves the
number of unknowns and enables one to rewrite ha(t) with the aid of the following
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Figure 5. Polynomials f (m, t) for m = 0, 1, 2, and 3.

basis functions:

g(n, m, t) =(−1)m f (m, t + (n + 1)Tin) + f (m, t − nTin)

=




(−1)m
(

2(t + (n + 1)Tin)

Tin
− 1

)m

for − (n + 1)Tin

≤ t < −nTin(
2(t − nTin)

Tin
− 1

)m

for nTin ≤ t < (n + 1)Tin

0 otherwise
(14)

as

ha(t) =
N/2−1∑

n=0

M∑
m=0

cm(n)g(n, m, t). (15)

As illustrated in Figure 6 for the n = 1 and m = 3 case, each resulting basis
function g(n, m, t) is characterized by the following properties:

(1) g(n, m, t) = g(n, m, −t) for −(n + 1)Tin < t < −nTin .
(2) g(n, m, t) is defined at t = −(n +1)Tin and t = nTin , but not at t = −nTin

and t = (n + 1)Tin .

Hence, all the basis functions are symmetrical around t = 0 except for the points
t = ±nTin and t = ±(n + 1)Tin . The exception is the n = 0 case, where the
value of g(0, m, t) at t = 0 is (−1)m . Hence, the overall impulse response ha(t)
is symmetrical around t = 0 except for the time instants t = kTin for k = −N/2,
−N/2 + 1, . . . ,−1 and k = 1, 2, . . . , N/2. Various time domain conditions at
these points that are useful in practical applications will be considered in detail in
Subsection 5.1.

Figure 7 shows how to construct the overall impulse response ha(t) for
N = 8 and M = 3 according to equation (15). The weighted basis functions
cm(n)g(n, m, t) for m = 0, 1, 2, and 3 are shown in Figures 7a–d, respectively. In
each of these figures there are four weighted basis functions for which n = 0, 1, 2,
and 3. The resulting overall impulse response ha(t) as shown in Figure 7e is then
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Figure 6. The basis function g(n, m, t) for n = 1 and m = 3.
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Figure 7. Construction of the overall impulse response ha(t) for N = 8 and M = 3. The weighted
basis functions cm (n)g(n, m, t) for n = 0, 1, 2, and 3 and for (a) m = 0, (b) m = 1, (c) m = 2, and
(d) m = 3. (e) The resulting impulse response ha(t).

generated by adding together all the weighted basis functions in Figures 7a–d. We
point out that N , the length of the filter, and M , the degree of the polynomials,
can be chosen independently, and ha(t) is not forced to take on the value of unity
at t = 0 and the value of zero at t = ±Tin , ±2Tin, . . . ,±N Tin/2 as for the
Lagrange and B-spline interpolation filters.
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4.2. Frequency response for the generalized interpolation
filter

According to equation (15), the Fourier transform of ha(t) can be expressed as

Ha( f ) ≡ Ha( j2π f ) =
N/2−1∑

n=0

M∑
m=0

cm(n)G(n, m, f ), (16)

where G(n, m, f ) is the Fourier transform of the basis function g(n, m, t). Be-
cause g(n, m, t) is symmetrical around t = 0 except for the time instants t = kTin

for k = −N/2, −N/2 + 1, . . . ,−1 and k = 1, 2, . . . , N/2, G(n, m, f ) is real
and is given by (see Appendix A)5

G(n, m, f ) =




2 cos(2π f (n + 1
2 )Tin)

×
[
(−1)m/2m!�(m, f ) +

sin(π f Tin)

π f Tin

]
for m even

2(−1)(m+1)/2Tinm! sin(2π f (n + 1
2 )Tin)�(m, f ) for m odd,

(17)

where

�(m, f ) =
�(m−1)/2�∑

k=0

(π f Tin)2k−m (−1)k

(2k)!
(

sin(π f Tin)

π f Tin
− cos(π f Tin)

(2k + 1)

)
. (18)

It has turned out that for low values of f there are numerical accuracy problems
because the summation of some relatively large consecutive terms in equation (18)
is very small. This problem can be avoided by using power-series expansions for
sine and cosine functions with low values of f , resulting in the form

�(m, f ) =
�(m−1)/2�∑

k=0

∞∑
l=�(m−1)/2�+1

(π f Tin)2(k+l)−m (−1)k+l2(k − l)

(2k + 1)!(2l + 1)! . (19)

It has been experimentally observed that a proper borderline for using equations
(18) or (19) is at f = 2.5Fin . Furthermore, it has turned out that a good selection
for the upper limit in the second summation of equation (19) is �(m −1)/2�+20.

The preceding form of the Fourier transform of ha(t) is very attractive because
it is linear with respect to the unknowns cm(n). This enables one to optimize the
unknowns very quickly in a manner similar to that of the linear-phase FIR filters,
as will be seen in the next section. An alternative form for expressing Ha( f ) by
using certain weighting functions has been proposed in [15].

5 We point out that the derivation of the Fourier transform of the basis function g(n,m,t) has been
performed for the case where there are no restrictions at the above time instants due to the fact
that these restrictions have no effect on the resulting Fourier transform. All that matters is that
after including the time domain constraints, some cm (n)’s are related to each other, resulting in
some limitations on the frequency domain behavior of the interpolation filter, as will be seen in
Section 5.
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4.3. Modified Farrow structure

By substituting equation (12) into equation (4), it can be shown that the gen-
eralized interpolation filter can be implemented using a modified version of the
original Farrow structure. This modified structure has two differences compared
to the original structure. First, the output samples vm(nl) of the FIR filters are
multiplied by 2µl − 1, instead of µl . Second, the impulse responses of these
M + 1 FIR filters with transfer functions of the form

Cm(z) =
N−1∑
k=0

cm(k − N/2)z−k for m = 0, 1, . . . , M (20)

possess the properties given by equation (13). This implies that the impulse re-
sponse coefficients cm(k) satisfy for k = 0, 1, . . . , N/2 − 1

cm(N/2 − 1 − k) =
{

cm(−N/2 + k) for m even

−cm(−N/2 + k) for m odd.
(21)

When exploiting the above symmetries, the number of coefficients to be imple-
mented can be reduced from (M + 1)N to (M + 1)N/2. In the original structure,
such symmetries do not exist if the fractional interval is given in the interval
0 ≤ µl < 1.

The coefficients of the modified structure denoted by cm(n) and the coefficients
of the original structure denoted by ĉm(n) are related to each other via [19]

cm(n) =
M∑

k =m

1

2k

(
k
m

)
ĉk(n), (22)

for n = −N/2, −N/2 + 1, . . . , N/2 − 1 and m = 0, 1, . . . , M .

5. Filter optimization

This section shows how the proposed generalized interpolation filter can be opti-
mized in the frequency domain in the minimax or in the least-mean-square sense
subject to the given time domain conditions. We start by stating the constrained
optimization problems and then convert these problems into the corresponding
unconstrained ones. Finally, efficient algorithms are described for finding the
optimum solution.

5.1. Optimization problems

This contribution concentrates on the following two optimization problems:
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Minimax optimization problem

Given N , M , and a compact subset X ⊂ [0, ∞)6 as well as a desired function
D( f ) that is continuous for f ∈ X and a weight function W ( f ) that is positive
for f ∈ X , find the (M + 1)N/2 unknown coefficients cm(n) to minimize

δ∞ = max
f ∈ X

∣∣W ( f )
[
Ha( f ) − D( f )

]∣∣ (23)

subject to the given time domain conditions of ha(t). Here, the frequency response
Ha( f ) is given by equation (16).

Least-mean-square optimization problem.

Given the same parameters and functions as for the preceding problem, find the
(M + 1)N/2 unknown coefficients cm(n) to minimize

δ2 =
∫

X

{
W ( f )

[
Ha( f ) − D( f )

]}2
d f (24)

subject to the given time domain conditions of ha(t).
Any conditions that can be expressed in the form

N/2−1∑
n=0

M∑
m=0

am,k(n)cm(n) ≤ bk for k = 1, 2, . . . , K , (25)

where the am,k(n)’s and bk’s are constants can be included in a straightforward
manner in the preceding optimization problems. Here K is the number of condi-
tions. Therefore, it is also possible to set some frequency domain conditions for
Ha( f ). For instance, it may be desired that Ha( f ) = 17 or 0 at some frequency
point in the passband or stopband, respectively.

In most applications, there is no need to set any conditions for ha(t). In these
cases, all degrees of freedom can be utilized for the frequency domain optimiza-
tion. There are, however, applications where it is useful to give some time domain
conditions. For instance, if the interpolation filter is used for approximating the
derivative of ya(t), it may be desired that the first derivative of ha(t) be continuous
[16]. In the sequel, the following four cases will be considered.

Case I: There are no time domain conditions.
Case II: ha(t) is continuous at t = kTin for k = ±1, ±2, . . . , ±(N/2 − 1).
Case III: ha(0) = 1 and ha(kTin) = 0 for k = ±1, ±2, . . . ,±N/2.
Case IV: The first derivative of ha(t) is continuous at t = kTin for k = 0, ±1,

±2, . . . ,±(N/2 − 1).

6 In most cases, X consists of disjoint passband and stopband regions, as will be seen later on.
7 In the practical optimization, it is assumed that Fin = 1. For other values of Fin , Ha( f )

approximates 1/Fin in the passband. The above assumption is also true when plotting the
magnitude responses in Section 6.



POLYNOMIAL-BASED INTERPOLATION FILTERS—PART I 129

Case I is the most natural selection in many applications where the main goal
is to provide the desired frequency selectivity for the reconstruction filter. Case
II guarantees that the impulse response of the reconstruction filter is continuous.
However, in the case of selective reconstruction filters, Case I and Case II designs
are practically the same, indicating that the Case II conditions are not very re-
strictive. Case III is of importance if the original input sample values are required
to be the same after interpolation. Case IV mainly applies when the interpolation
filter is used for approximating the derivative of ya(t) [16]. Finally, we point out
that various other time domain constraints may be included in a similar manner
in the above optimization problems depending on the application.

5.2. Modified optimization problems

All of the preceding four cases are of equal type. Therefore, the time domain con-
ditions can be easily dropped out and the optimization problems can be restated
in the forms of unconstrained problems by properly changing the approximating
function and the desired function. In Case I, there are no time domain conditions.
Appendix B shows that in Cases II, III, and IV the constraints are met by relating,
respectively, the c0(n)s for n = 1, 2, . . . , N/2 − 1, the c0(n)s and c1(n)s for
n = 0, 1, . . . , N/2−1, and the c1(n)s for n = 0, 1, . . . , N/2−1 to the remaining
cm(n)s according to Table 1.

The coefficients given in Table 1 are not included in the optimization because
they can be calculated by using the remaining unknown coefficients.

By substituting the coefficients of Table 1 into equation (16), the approximating
function Ha( f ) can be expressed as follows (see Appendix B):

Ha( f ) = H̃a( f ) + E( f ), (26)

where E( f ) is a function that is independent of the unknowns, and H̃a( f ) is a
modified approximating function containing the remaining unknowns and is of
the following form:

H̃a( f ) =
R−1∑
r=0

b(r)�(r, f ). (27)

Here, the �(r, f )’s are the modified basis functions and R is the number of
remaining unknowns b(r). Tables 1 through 3 give for each case the number of
unknowns R, the function E( f ), and the relation between the coefficients b(r)

and cm(n) as well as that between the functions �(r, f ) and G(n, m, f ).
Using equation (26) the weighted error function in equations (23) and (24) can

be expressed as

W ( f )
[
Ha( f ) − D( f )

] = W ( f )
[

H̃a( f ) − D̃( f )
]
, (28)

where the new desired function is given by

D̃( f ) = D( f ) − E( f ). (29)
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Table 2. Number of unknown coefficients R and functions E( f ) for the four different cases

R E( f )

CASE I N (M + 1)/2 0
CASE II N M/2 + 1 0
CASE III N (M − 1)/2 (G(0, 0, f ) − G(0, 1, f ))/2
CASE IV N M/2 0

Table 3. Relations between the modified unknowns b(r) for r = 0, 1, . . . , R − 1 and the
original unknowns cm(n) for n = 0, 1, . . . , N/2 − 1 and for m = 0, 1, . . . , M . Note that
the indices n and m corresponding to the drop-out cm(n)s, as indicated in Table 1, are
disregarded in these relations

CASE I b(n(M + 1) + m) = cm(n) for m = 0, 1, . . . , M
CASE II b(0) = c0(0)

b(nM + m) = cm(n) for m = 1, 2, . . . , M

CASE III b(n(M − 1) + m − 2) = cm(n) for m = 2, 3, . . . , M

CASE IV b(nM) = c0(n)

b(nM + m − 1) = cm(n) for m = 2, 3, . . . , M

Based on these equations, the original constrained problems can be transformed
in all the four cases into the following unconstrained ones:

Modified unconstrained minimax optimization problem.

Given the same parameters and functions as for the original problem, find the R
unknown coefficients b(r) to minimize

δ∞ = max
f ∈ X

∣∣∣ W ( f )
[

H̃a( f ) − D̃( f )
] ∣∣∣ , (30)

where H̃a( f ) is given by equation (27) and D̃( f ) is given by equation (29).

Modified unconstrained least-mean-square optimization prob-
lem.

Find the R unknown coefficients b(r) to minimize

δ2 =
∫

X

{
W ( f )

[
H̃a( f ) − D̃( f )

]}2
d f. (31)

There are two main advantages of using these problems. First, the uncon-
strained problems are more straightforward to solve, as will be seen in the fol-
lowing two subsections. Second, finding the optimum solution is significantly
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faster. After finding the unknowns b(r) for r = 0, 1, . . . , R − 1, the correspond-
ing coefficients cm(n) can be determined from Table 3 and, then, the remaining
coefficients can be solved according to the equations of Table 1.

5.3. Optimization in the minimax sense

The minimization of δ∞, as given by equation (30), can be performed conve-
niently by using linear programming. This can be carried out by using the follow-
ing two steps (see, e.g., [13]).

(1) Sample D̃( f ) and W ( f ) as well as the �(r, f )’s along a dense grid of
frequencies f1, f2, . . . , fK on X .

(2) Apply linear programming to find b(r) for r = 0, 1, . . . , R − 1 and δ∞
subject to the constraints

R−1∑
r=0

b(r)�(r, fk) − δ∞
W ( fk)

≤ D̃( fk) (32a)

and

−
R−1∑
r=0

b(r)�(r, fk) − δ∞
W ( fk)

≤ −D̃( fk) (32b)

for k = 1, 2, . . . , K such that δ∞ is minimized. Note that the maximum deviation
δ∞ is also an unknown.

5.4. Optimization in the least-mean-square sense

In this case, D̃( f ) and W ( f ) as well as the �(r , f )’s are sampled along a dense
grid of frequencies f1, f2, . . . , fK on X , and δ2 as given by equation (31) can be
replaced by the following summation:

δ2 ≈ δ̂2 = 1

K

K∑
k=1

(
W ( fk)

(
R−1∑
r=0

b(r)�(r, fk) − D̃( fk)

))2

. (33)

Before giving the optimum solution, the following matrix and two vectors are
constructed:

X =




W ( f1)�(0, f1) W ( f1)�(1, f1) · · · W ( f1)�(R − 1, f1)

W ( f2)�(0, f2) W ( f2)�(1, f2) · · · W ( f2)�(R − 1, f2)
...

...
...

W ( fK )�(0, fK ) W ( fK )�(1, fK ) · · · W ( fK )�(R − 1, fK )


 ,

(34a)

b = [
b(0) b(1) · · · b(R − 1)

]T
, (34b)
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and

d =
[
W ( f1)D̃( f1) W ( f2)D̃( f2) · · · W ( fK )D̃( fK )

]T
. (34c)

Here, b is the vector containing the unknowns. It is well known that b minimizing
δ̂2, as given by equation (33), is [10]

b =
(

XT X
)−1

XT d (35a)

and it satisfies the “normal equations”(
XT X

)
b = XT d. (35b)

Equation (33) is an approximation to the least-mean-square error as given by
equation (31). The approximation accuracy can be improved by increasing the
number of frequency points denoted by K . In practice, K should be limited in
order to have a reasonable computational complexity, and Gaussian elimination
or some other techniques should be used in equation (35a) instead of matrix inver-
sion (see, e.g., [10]). Furthermore, a good accuracy for the solution obtained by
minimizing δ̂2, as given by equation (33), implies that the grid points are selected
equidistantly. In most problems the upper limit for X is infinity. In practice, it has
turned out that a proper selection for the upper limit is between 30Fin and 100Fin ,
depending on the length and polynomial degree of the interpolation filter. For K ,
a proper selection is between 103 and 104.

6. Examples

This section provides two design examples to illustrate the flexibility of the pro-
posed minimax and least-mean-square synthesis methods as well as the perfor-
mance of the resulting filters. These filters are compared to those obtained using
the conventional design methods.

Example 1. In this example, the highest baseband frequency component of the
input signal x(n) is assumed to be at 0.35Fin , and it is desired that the polynomial-
based interpolation filter preserve the baseband signal with at most 1% error in
the linear scale and attenuate the image frequencies by at least 60 dB. Hence, the
filter specifications are as follows. The passband edge is located at f p=0.35Fin ,
the stopband region consists of the intervals [(k − 0.35)Fin , (k + 0.35)Fin] for
k = 1, 2, . . . , the maximum passband deviation of the magnitude response from
unity is δp = 0.01, and the minimum stopband attenuation is As = 60 dB in the
stopband region.

Altogether, five design methods are under consideration, namely, the Lagrange
and B-spline interpolations [5], [14], the least-mean-square synthesis technique of
Farrow that is based on the FD filter approach [6] (referred to as the “L2 Farrow”
technique) as well as the least-mean-square (referred to as “L2” technique) and the
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minimax optimization techniques proposed in this contribution. In addition, two
alternatives are considered for each of these methods. The first one is the direct
implementation using the modified Farrow structure. A cascade of the prefilter
and the modified Farrow structure is assumed to be used for the B-spline interpo-
lation, where the prefilter is approximated by a linear-phase FIR filter of a proper
order, see, e.g., [4]. For the second alternative, the sampling rate is increased by
a factor of two with the aid of a fixed linear-phase FIR interpolator before using
the Farrow structure. This FIR filter is optimized separately for each case using
the Remez algorithm. The overall system comprising the fixed FIR filter and the
Farrow structure has to meet the filter specifications.

Table 4 shows data for each of the five design methods in the above-mentioned
two alternative cases. In this table, L is the interpolation factor of the fixed digital
interpolator. For the second alternative L = 2, whereas for the first alternative
L = 1 and the fixed interpolator is not in use. According to the previous discus-
sions, N and M indicate that the modified Farrow structure consists of M + 1
FIR filters of length N with either a symmetrical or anti-symmetrical impulse
response. δp is the maximum passband deviation from unity in the linear scale,
and As is the minimum stopband attenuation. For L = 2, NF I R , the length of
the FIR filter used for the fixed interpolation, is given. In addition, the number of
multipliers required in the overall implementation, including the multiplications
by µl , and the multiplication rate, that is, the number of multiplications per input
sample, are included in the table. In determining these quantities, the coefficient
symmetries of the modified Farrow structure and the FIR filter as well as the
interpolation ratio β = Fout/Fin are taken into account.

As seen from Table 4, the conventional time domain methods, namely, the
Lagrange and B-spline interpolations, have clearly higher implementation com-
plexities, in terms of the number of multipliers and the multiplication rate, when
compared with the three remaining methods. As can be expected, the minimax
filter with L = 2 provides the lowest complexity. In addition, the number of
multipliers can be reduced for all five cases by using a fixed linear-phase FIR
interpolator with L = 2. The multiplication rate is also much smaller for the
L = 2 case if the overall sampling rate conversion factor β is large enough. Note
that in the L = 1 case, the first three filters have a very low passband deviation
because these methods do not allow the use of different weights for shaping the
passband and the multiband stopband region.

The Minimax I filter in Table 4 has been optimized using an iterative algorithm,
where, in each iteration, the FIR interpolator or the Farrow structure is opti-
mized in the minimax sense using linear programming so that they properly share
the frequency-response-shaping responsibilities and the effect of the magnitude
response of the other filter is properly included in the desired and weighting
functions. The advantage of this joint optimization becomes more evident in the
next example.

As examples, Figures 8a and b show the magnitude responses of the Lagrange
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and the B-spline interpolation filters for several values of M , whereas Figure 8c
shows the magnitude response of the Farrow interpolation filter [6] for the fol-
lowing design parameters: the length of the filter is N = 12, the degree of the
polynomials is M = 4, and the passband edge is located at f p = 0.35Fin .

Figure 9 shows the magnitude responses of the minimax filter for L = 1 and
for L = 2 in the case where the fixed interpolator and the Farrow structure have
been separately designed such that the overall filter and the subfilters have the
same bassband region.

Example 2. The filter specifications in this example are as follows: f p = 0.4Fin ,
fs = 0.6Fin , δp = 0.001, and As = 80 dB. The main difference compared to
the previous example is that the stopband region is uniform starting at 0.6Fin . A
uniform stopband is needed if there are some undesired signal components, e.g.,
wideband noise in the frequencies between the desired signal components and the
aliasing components.

Various fixed interpolation ratios have been used for the five design methods
summarized in Table 5. For the interpolation factors L = 4 and L = 6, a two-
stage fixed linear-phase FIR interpolator of lengths NF I R1 and NF I R2 has been
designed so that the interpolation ratio for the first stage is 2.

The problem with the conventional design methods (Lagrange, B-spline, and
L2 Farrow) is that they do not utilize the analog model and, therefore, “don’t
care” bands always exist between the image frequencies. Consequently, in the
direct implementation (L = 1) these filters do not provide a uniform stopband
region with reasonably low values of N and M .

As seen from Table 5, the interpolation filters obtained with the joint opti-
mization (filters Minimax I-III) have much lower complexities in terms of the
number of multipliers and the multiplication rate. Figure 10 shows the magnitude
responses for the L2 and Minimax interpolation filters in the case of direct imple-
mentation (L = 1) as well as for the Minimax and Minimax II filters with L = 4.
As seen from Figure 10d, the joint optimization of the two stage-interpolator with
both interpolator factors equal to two and the Farrow structure has been performed
as follows. The first interpolation stage concentrates on shaping the overall re-
sponse in the region [0, Fin]. The role of the second interpolation stage and the
Farrow structure is then to properly attenuate the extra unwanted passbands and
transition bands of the first interpolation stage so that the magnitude responses
achieve a value of unity at the passband edge f p = 0.4Fin .

7. Conclusions

The main contribution of this paper was a proposed frequency domain optimiza-
tion method for a generalized class of polynomial-based interpolation filters. This
class of interpolation filters was derived by using the analog model for the general
interpolation problem that enables one to exploit the frequency domain informa-
tion of the input signal when optimizing the interpolation filters. It was shown that
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Figure 8. The magnitude responses for (a) the Lagrange interpolation filters with degrees M =
1, 3, 5, 7, and 9, (b) the B-spline interpolation filters [6] with degrees M = 3, 5, and 7, and (c) the
Farrow interpolation filter for N = 12, M = 4, and f p = 0.35Fin .
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Figure 9. The overall magnitude responses of the minimax interpolation filters of Example 1 (solid
lines) for (a) L = 1 and (b) L = 2. For L = 2, the Farrow structure and the fixed FIR filter have been
separately designed and their magnitude responses are given by the dashed and dash-dotted lines,
respectively.

the coefficients of the reconstruction filter in the analog model uniquely determine
the coefficients for the modified Farrow structure.

The minimax and least-mean-square optimizations of the filter coefficients
were given. The parameters for the optimization are the length of the filter,
the degree of the interpolation, the passband and stopband regions, the desired
response, and the weighting function.

Examples indicated that the proposed optimizations offer filters with lower
complexities compared with the existing interpolation filters, especially when the
fixed FIR interpolator and the Farrow structure are jointly optimized to meet the
filter specifications. A set of Matlab codes for proposed interpolation filters are
available via http://www.cs.tut.fi/ ts.
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Appendix A

This appendix shows that the Fourier transform of the basis function g(n, m, t)
as given by equation (14) can be expressed as given by equations (17) and (18).
This transform, denoted by G(n, m, f ), is real valued because g(n, m, t) is sym-
metrical around t = 0 for all values of n and m (except at the points kTin for
k = ±1, ±2, . . . ,±N/2.

To simplify the derivation, g(n, m, t) is rewritten in the following form:

g(n, m, t) = (−1)m f̂ (m, t + (n + 1/2)Tin) + f̂ (m, t − (n + 1/2)Tin), (A1)

where

f̂ (m, t) =
(

2t

Tin

)m

(u(t + Tin/2) − u(t − Tin/2)), (A2)

where u(t) is the unit step function. Alternatively, f̂ (m, t) can be expressed as

f̂ (m, t) = e1(m, t + Tin/2) − e2(m, t − Tin/2), (A3)

where

e1(m, t) =
(

2t

Tin
− 1

)m

u(t) =
m∑

k=0

(−1)k
(

m
k

) (
2t

Tin

)m−k

u(t), (A4)

and

e2(m, t) =
(

2t

Tin
+ 1

)m

u(t) =
m∑

k=0

(
m
k

) (
2t

Tin

)m−k

u(t). (A5)

Based on the following two facts,

(1) if the Laplace transform of c(t) is C(s), then the Laplace transform of c(t −
K ) is e−sK C(s), and

(2) the Laplace transform of tmu(t) is m!/sm+1,

the Laplace transform of g(n, m, t) takes the following form,

G(n, m, s) = (−1)mes(n+ 1
2 )Tin F̂(m, s) + e−s(n+ 1

2 )Tin F̂(m, s), (A6)

where

F̂(m, s) = esTin/2 E1(m, s) − e−sTin/2 E2(m, s) (A7)

with

E1(m, s) =
m∑

k=0

(−1)k
(

m
k

) (
2

Tin

)m−k
(m − k)!
sm−k+1

=
m∑

k=0

(−1)k
(

2

Tin

)m−k m!
k!sm−k+1

(A8)
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Figure 10. Magnitude responses for interpolation filters in Example 2 included in Table 5. (a) L2
interpolation filter for L = 1 (b) Minimax interpolation filter for L = 1. (Cont.).

and

E2(m, s) =
m∑

k=0

(
m
k

) (
2

Tin

)m−k
(m − k)!
sm−k+1

=
m∑

k=0

(
2

Tin

)m−k m!
k!sm−k+1

.

(A9)

The Fourier transform of the basis function g(n, m, t) is now obtained by using
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Figure 10. (Cont.) (c) Minimax filter for L = 4. The solid, dashed, dotted, and dash-dotted lines
show the responses for the overall filter, the Farrow structure, the first fixed interpolation filter, and
the second interpolator filter, respectively. (d) The same as in (c) for the jointly optimized Minimax II
filter.

the substitution s = j2π f , that is,

G(n, m, f ) ≡ G(n, m, j2π f )

=
(

(−1)me j2π f (n+ 1
2 )Tin + e− j2π f (n+ 1

2 )Tin

)
F̂(m, j2π f )

=
{

2 cos(2π f (n + 1
2 )Tin)F̂(m, j2π f ) for m even

−2 j sin(2π f (n + 1
2 )Tin)F̂(m, j2π f ) for m odd.

(A10)
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After some manipulations, including normalization with 1/Tin , this G(n, m, f )

can be expressed in the form given by equation (17).

Appendix B

This appendix shows how the Case II, III, and IV time domain conditions of
Section 5 can be dropped out by properly converting the original constrained
optimization problems to the corresponding unconstrained ones. The following
notation is used here to simplify the derivations:

h(n, µl) ≡ ha((n + µl)Tin), (B1)

where the polynomial-based impulse response ha((n + µl)Tin) is given by equa-
tion (12).

B.1. Case II

In this case, the condition that ha(t) is continuous at t = kTin for k =
±1, ±2, . . . ,±(N/2 − 1) can be stated in terms of the h(n, µl)’s as follows:

h(n − 1, 1) = h(n, 0) (B2)

for n = 1, 2, . . . , N/2 − 1. By using equations (B1) and (12), the condition of
equation (B2) can be given by means of the coefficients cm(n) as follows:

M∑
m=0

cm(n − 1) =
M∑

m=0

(−1)mcm(n) (B3)

for n = 1, 2, . . . , N/2 − 1. These conditions are satisfied by relating the c0(n)’s
for n = 1, 2, . . . , N/2 − 1 to the remaining cm(n)’s according to Table 1. Substi-
tuting these c0(n)’s into equation (16) gives

Ha( f ) = H̃a( f ) + E( f ), (B4)

where

E( f ) = 0 (B5)

and

H̃a( f ) = c0(0)G̃(0, 0, f ) +
N/2−1∑

n=0

M∑
m=1

cm(n)G̃(n, m, f ) (B6)
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with

G̃(n, m, f ) =




G(0, m, f ) +
N/2−1∑

k=1
G(k, 0, f ) for n = 0

G(n, m, f ) − G(n, 0, f ) for n > 0 and m even

G(n, m, f ) + G(n, 0, f )

+2
N/2−1∑
k=n+1

G(k, 0, f ) for n > 0 and m odd.

(B7)

Here, G(n, m, f ) is given by equations (17) and (18) and, for f ≥ 1.5Fin and
f < 1.5Fin , by equations (17) and (19) respectively.

Based on the above derivation, the modified unconstrained optimization prob-
lems take the forms of equations (30) and (31), and the number of unknowns
R, functions E( f ), coefficients b(r), and the modified basis functions �(r , f )

become as given in Tables 1–3.

B.2. Case III

In this case, it is required that ha(0) = 1 and ha(kTin) = 0 for k = ±1,
±2, . . . ,±N/2. These criteria can be stated in terms of the h(n, µl)’s for n = 0
as

h(0, 0) =
M∑

m=0

(−1)mcm(0) = 1 and h(0, 1) =
M∑

m=0

cm(0) = 0 (B8)

and for n = 1, 2, . . . , N/2 − 1 as

h(n, 0) =
M∑

m=0

(−1)mcm(n) = 0 and h(n, 1) =
M∑

m=0

cm(n) = 0. (B9)

These conditions are satisfied by relating the c0(n)’s and c1(n)’s for
n = 0, 1, . . . , N/2−1 to the remaining cm(n)’s according to Table 1. Substituting
these c0(n)’s and c1(n)’s into equation (16) gives

Ha( f ) = H̃a( f ) + E( f ), (B10)

where

E( f ) = (G(0, 0, f ) − G(0, 1, f ))/2 (B11)

and

H̃a( f ) =
N/2−1∑

n=0

M∑
m=2

cm(n)G̃(n, m, f ) (B12)
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with

G̃(n, m, f ) =
{

G(n, m, f ) − G(n, 0, f ) for m even

G(n, m, f ) − G(n, 1, f ) for m odd.
(B13)

Tables 1–3 give the resulting R, E( f ), b(r)’s, and �(r, f )’s for the correspond-
ing modified unconstrained optimization problems.

B.3. Case IV

In this case, it is required that the first derivative of ha(t) be continuous at t = kTin

for k = 0 and for k = ±1, ±2, . . . ,±(N/2 − 1). These conditions can be stated
by first taking the derivative of h(n, µl) as follows:

h′(n, µl) = dh(n, µl)

dµl
=

M∑
m=1

2mcm(n)(2µl − 1)m−1. (B14)

It is required that

h′(0, 0) = 0 (B15)

and for n = 1, 2, . . . , N/2 − 1

h′(n − 1, 1) = h′(n, 0). (B16)

The Case IV criteria are satisfied by relating the c1(n)’s to the remaining
cm(n)’s for n = 0, 1, . . . , N/2 − 1 according to Table 1. Substituting these
c1(n)’s into equation (16) gives

Ha( f ) = H̃a( f ) + E( f ), (B17)

where

E( f ) = 0 (B18)

and

H̃a( f ) =
N/2−1∑

n=0

M∑
m = 0
m �= 1

cm(n)G̃(n, m, f ) (B19)

with

G̃(n, m, f ) =




G(n, 0, f ) for m = 0

G(n, m, f ) + mG(n, 1, f )

+2m
N/2−1∑
k=n+1

G(k, 1, f ) for m even

G(n, m, f ) − mG(n, 1, f ) for m odd.

(B20)

Tables 1–3 give R, E( f ), b(r), and �(r, f ) for the corresponding modified
unconstrained optimization problems.
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