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local state feedback is very difficult. The results presented 
in Section IV shows that one could reduce the stabilization 
problem to a solvability problem of an algebraic Riccati 
equation in which the matrix e may not be nonnegative 
and there are two “parameter matrices” W and G, the 
choice of which are directly related to the resolution of the 
stabilization problem. 
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Explicit Formulas for Lattice Wave Digital Filters 
LAJOS GAZSI, SENIOR MEMBER, IEEE 

AMract -Explicit formulas are derived for designing lattice wave digital 
filters of the most common filter types, for Butterworth, Chebyshev, 
inverse Chebyshev, and Cauer parameter (elliptic) filter responses. Using 
these formulas a direct top down design method is obtained and most of the 
practical design problems can be solved without special knowledge of filter 
synthesis methods. Since the formulas are simple enough also in the case 
of elliptic filters, the design process is sufficiently simple to serve as basis 
in the first part (filter design from specs to algorithm) of silicon compilers 
or applied to high level programmable digital signal processors. 

I. INTRODUCTION 

W AVE DIGITAL filters (WDF’s) [l] have some nota- 
ble advantages [2]: excellent stability properties even 

under nonlinear operating conditions resulting from over- 
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flow and roundoff effects, low coefficient wordlength re- 
quirements, inherently good dynamic range, etc. All these 
properties are essentially a consequence of the fact that 
WDF’s, if properly designed, behave completely like pas- 
sive circuits. 

For a proper design the full apparatus of the classical 
filter synthesis techniques (including those for microwave 
filters) can be made use of, which guarantees a solid 
mathematical basis of the WDF’s. This fact, however, 
could be a serious hindrance when the designer is not 
familiar with the intricate techniques of the classical net- 
work theory (e.g., in the case of signal processing applica- 
tions in medical, seismic, image, speech area etc, where the 
companies and institutions may not have available for this 
purpose specialized filter design groups, as well as pro- 
gramming and computer facilities). 
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The fact that the papers about various design aspects of 
WDF’s are spread over several journals and sometimes not 
easily accessible conference proceedings worsens the chance 
of a faultless outcome of the design. 

Therefore, direct methods for designing WDF’s, e.g., 
explicit formulas for element values are of considerable 
interest, in as far as they are simple or even exist. 

It is well known that for WDF’s there exists a great 
number of different structures according to the different 
realisation possibilities of the reference filters [2]. For- 
tunately, one can find some algorithms among these struc- 
tures whose design can be carried out by using explicit 
formulae and simultaneously these algorithms are general 
enough to satisfy the most common low-pass, high-pass, 
bandpass, and bandstop frequency-domain requirements. 

In this paper, we will present direct design methods for 
lattice WDF’s [3] where both lattice branches are realized 
by cascaded first- and second-degree all-pass sections. Other 
structures where a direct design is possible using explicit 
formulas will be discussed elsewhere. Furthermore, we will 
restrict ourselves to the realization of low-pass (high-pass) 
filters, because by means of network transformations a 
variety of other filter types such as high-pass, bandpass, 
and bandstop filters can be very easily derived from a 
certain low-pass filter. 

InputI Input2 

Fig. 1. Wave-flow diagram of a lattice WDF 

equally resistively terminated. The reference filter is de- 
signed in the #-domain, i.e., the complex frequency varia- 
ble 4 is used instead of the usual variable p. The relation 
between # and p is given by 

1+5 = tanh pT/2 04 
T=l/F (lb) 

The purpose of this paper is twofold. In the first part a 
brief treatment for specialists is given about the construc- 
tion of the explicit formulas. In the second part we will 
present for these filters a design procedure which may be 
used directly without requiring a complete understanding 
of the underlying methods (we will there omit any proof), 
thus providing powerful tools for the design engineer. 

where F is the sampling frequency. 
In both lattice branches of the lattice WDF (see Fig. 1) 

S,( 4) and S,( J/) are reflectances of reactances, i.e., all-pass 
functions. 

Consequently, they may be written (except for possible 
sign reverals) in the following form: 

SIC Sk +) 
81(#) 

Now we will first recapitulate briefly some basic defini- 
tions of the lattice WDF’s. Following these we will prove 
an important property of the most common lattice WDF’s 
concerning the distribution of their poles among the lattice 
branches. Then we present explicit formulae for designing 
the most common, i.e., Butterworth, Chebyshev, inverse 
Chebyshev, and Cauer parameter (elliptic) low-pass filters. 
using Darlington’s results [ll], [12] for avoiding the com- 
putation of elliptical (Jacobian) functions, easily manage- 
able computation steps can be given which are simple 
enough for computations with certain pocket calculators. 
Design examples illustrate the efficiency of this design 
procedure. Finally, we will give a method which guarantees 
that these filters are scaled in the best possible way for 
sinusoidal excitation. 

and 

$= d- 4) 
dJ/) 

(2’4 

where gl(#) and gA#) are Hurwitz polynomials [13] of 
degree Ni and N2, respectively. 

Further, it is well known that the transfer 
which are realized by these WDF’s are given by 

s,+s2 W) 

functions 

s,, = s,, = 2 = - 
&J) 

G-S1 fW s,, = s,, = 7y-- = - 
&> 

(3) 

(4 

where h(G), f(#), and g(#) are the so-called canonic 
polynomials [13], [14]. 

II. DERIVATION OF THE EXPLICIT FORMULAS 

2.1. Basic Definitions 

The basic principles of the lattice WDF’s have been 
described in the literature [3]-[lo], they will not be re- 
peated here. Only the basic definitions will now be re- 
called. 

We consider in the following the high-pass (or low-pass) 
case, and we will suppose that Ni is odd and N2 is even. 
The opposite choice would simply amount to changing the 
sign of (4) and this possibility can thus henceforth be 
ignored. Interchanging of g,(G) and g*(q) in (2) would 
simply lead to the dual realization, therefore, this possibil- 
ity will also be ignored. 

The WDF’s are derived from real lossless reference 
filters using the voltage wave quantities [l]. For a lattice 
WDF [3] the reference filter is a real symmetric two-port 

From (2), (3), or (4) we can see that 

g(4) = dd+&W (5) 
i.e., g(G) is a Hurwitz polynomial of degree N where 
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N = N1 + N2. Consequently, N must be always an odd 
number for the high-pass (low-pass) filters. The degree of 
the lattice WDF [3] is the sum of the degrees of the two 
reflectances S1 and S,. 

Further, from (2), (3), and (4) it is clear that 

h(4) =:{d- ~)dIcI)+&kd- 4)) (6) 
and 

fu4 =Hglwg2t- d-d- ~MW (7) 
i.e., h (\c/) and f (#) are even and odd polynomials, respec- 
tively. 

It is known, that the transfer functions are related at real 
frequencies J, = jr+~ by the Feldkeller equation [13] 

ISllb) 12+ Is21t.h) I2 =l. (8) 
The attenuation (or loss) is defined by 

atd = -2Olog IS2d.hfdl. (9) 
The so-called characteristic function is defined by 

SIlW hN) -=- 
c(J/)= s*,t+) f(q). (10) 

Further, it is clear that the zeros of the polynomial 
g( #)g( - JI) occur when 

c’(l)) =l. (11) 
From (6) and (7) we have 

W)+fW =de+ 4). 
Accordingly, this equation implies that solving 

c(q)= -1 (12) 
the polynomials gi( J/) and g2( - 4) can be constructed. 
Similarly, we can conclude that the solution of 

c(lcl) =l 03) 
determines the polynomials g2( #) and gi( - $). 

In the most common cases, i.e., in Butterworth, 
Chebyshev, inverse Chebyshev and Cauer parameter (el- 
liptic) reference filters the equations (ll)-(13) can be ex- 
plicitly solved. Consequently, we can write the polynomials 
gi(#) and g*(G) in closed form. 

Before attempting to determine the explicit formulas 
arising in the synthesis procedure we will discuss a certain 
property on the location of the zeros of polynomials gi( J/) 
and g2(1c/) in the aforementioned cases. 

2.2. Alternating Distribution of Poles Among the Lattice 
Branches 

A simple proof for the fact that the poles of S,,(rc/) are 
alternately distributed in a cyclic manner (see Fig. 2) 
among the lattice branches can be given comparing the 
solutions of (12), (13) to that of (ll), which can be done 
explicitly for elliptic filters. In order to solve these equa- 
tions we will adopt the approach used by Rhodes (151 for 
the high-pass elliptic prototype filter. 

For these filters we have 

(14) 

* 
Re+ 

Fig. 2. Alternating distribution of the roots of the polinomials gl and 
g, (for N = 7). 

where F,,, is a real rational function of degree N and E is 
the ripple factor. The FN(#) may be expressed in the form 

F.(#) = cd, N.K(mo) cd -l( _ jJ/) 

K(m) 
(15) 

where the elliptic function cd, dependent upon the elliptic 
parameter m, has the quarter real period K(mO) and the 
inverse elliptic function cd -’ dependent upon the elliptic 
parameter m has the quarter real period K(m). 

Further, it is well known that the conditional require- 
ment [15] 

has to be satisfied, where for the sake of simplicity we use 
the brief forms of K,, = K(m,) and K = K(m) with the 
complementary quarter periods K,” and K”, respectively. 

From (14), (12) can be written as 

F,(G)=-;. 

Now, we define an auxiliary parameter n 

where the elliptic function sn depends on 

(16) 

as 

(17) 

the parameter m 
and the inverse function sn;’ depends on mO. 

Using (15) and (17), (16) may be written in the form 

Cd0 i 
NKO -cd-‘- j#) = -sn,( Fsn-57). 

K 

Solving this equation, 

NKO -cd -’ NKO 
K 

- j+ = ysn -917 + (4r + 1) K, + j2qK,” 

where r and q are integers. 
Accordingly, the zeros of gi( Jl)g2( - J/) occur at 

forr=O,l;--,(N-1). (18) 

Repeating the procedure once again for (13) we can 
conclude that the zeros of g2(#)gl( - 4) occur at 

#=- jcd(sn-!jv+ (4rL1)K), for r =1,2,-e., N. 

0% 
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Fig. 3. Wave-flow diagram of an all-pass section of degree one. 

Finally, solving (11) and selecting the roots of the left 
half-plane we have the zeros of gl(#)g2($) occur at [15] 

, for1=1,2;-.,N. 

(20) 
Comparing (18) and (19) to (20) we can conclude that 

for I odd and even, (20) gives the same values as (18) and 
(19), respectively, i.e., the zeros of gi( $) and g2( 4) will lie 
in alternating order in the left half-plane of the complex 
frequency (see Fig. 2). 

Since the inverse Chebyshev, the Chebyshev, and also 
the Butterworth case can be derived as limiting cases of 
elliptic function prototype filters [17], it is clear that this 
alternating property remains true also for these filter types. 

2.3. Synthesis Using Cascaded All-Pass Functions 

An all-pass function can be synthesized by several meth- 
ods [3]-[6]. In this paper we will consider the realization as 
a cascade of elementary sections by means of three-port 
circulators [l]. 

The elementary sections are the first- and second-degree 
all-pass sections. A section of degree one has a reflectance 
of the following form: 

-#+Bo 
‘= #+B, 

and a corresponding signal-flow diagram of a wave digital 
realization using the so-called two-port adaptor is given in 
Fig. 3 where the multiplier coefficient is given by [l], [6] 

l-B, 
“= l+ B; 

A second-degree all-pass section has a reflectance of the 
form 

s= #*-A;G+B; 

I)* + A,+ + Bi 

and using the two-port adaptors the corresponding wave 
digital realization has equivalent wave-flow diagrams given 
by Fig. 4, where the coefficient values are given by [l], [6] 

Ai- B,-1 
y2i-1= A,+ B,+l (22) 

and 

1-B; 
Y2i = I+ Bi. (23) 

Fig. 4. Equivalent wave-flow diagrams of the i th second-degree all-pass 
section. 

Now, let g(q) be given in a product form 
(N-1)/2 

g($)=($+Bo) iQl (+*+#*Ai+Bi)* (24) 

When we utilize the alternating property relating to the 
distribution of the zeros of polynomials gi($) and g2(#), 
all adaptor coefficients can be computed by (21), (22), and 
(23) from the parameters in (24). The corresponding block 
diagram for the filter is given in Fig. 5. 

Since in the most common cases, i.e., in Butterworth, 
Chebyshev, inverse Chebyshev and Cauer parameter (el- 
liptic) reference filters, (24) is given in closed form, the 
construction of explicit formulas is straightforward. 

2.4. Derivation of Explicit Formulas 

The derivation of the explicit formulas will be demon- 
strated by the most simple Butterworth (maximally flat) 
filter. It is well-known that in this case (24) has the 
following form [15]: 

where the passband edge (3.01 dB attenuation loss) 
frequency has the value 

‘p=‘po. 
Using (1) for 1c, = jq and p = j2rf, we may write 

v. = tan(rfo/F). 
Consequently, from (21), (22), and (23) we have for the 

coefficients 

l-td?Tf,/J’) 
?‘O= l+tan(nf,/F) 

sin(2vfo/F)-cos(mi/N)-1 
y2i-1= sin(2rfo/F)*cos(ri/N)+1 ’ 

for i=1,2;.-,(N-1)/2 

and 

y2 = y4 = . +. = yNel = cos(2rfo/F). (25) 
The block diagram of the filter is shown in Fig. 5. To 

realize this filter we need N delays, (3N + 1) adders (plus 
one adder if we use the complementary output for branch- 
ing filters), N multipliers and one (or two for branching 
filters) simple scalers with the factor l/2. 
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Fig. 5. Block diagram of the lattice WDF with cascaded all-pass sec- 
tions for N = 5,9,13; . ., or N = 7,11,15, ’ . ,respectively. 

In the above explicit formulas the design parameters are 
the 3-dB frequency f, in the digital domain, the sampling 
frequency F, and the degree N of the filter. However, the 
input parameters are usually given, as illustrated in Fig. 6, 
where fp and f, are the desired passband and stopband 
edges, F is the sampling frequency, a is the maximum . -4 . ..p 
passband loss, and a, is the rmmmum sto$band loss .(see 
(9)) for definition of loss). Of course, from these parame- 
ters the minimum value of the filter degree can easily be 
estimated (see Sections 3.1 and 3.2) and also a range for 
the allowable values of fo/F can be calculated. Further- 
more, we can observe from (25) that in this case all even 
numbered coefficients have the same value, say y, and this 
value can be arbitrarily chosen in a given range according 
to the allowable values of fo/F. This fact suggests that y 
should be chosen as design parameter instead of fo. In- 
deed, in Section 3.3 we will present the upper and lower 
bounds for y in terms of the input parameters, and we will 
give explicit formulas for the coefficient values in terms of 
y and N. Accordingly, we can usually choose y between its 
bounds in such a way that a simple value is obtained (the 
simplest being the choice y = 2 - “, with n integer; cf. the 
Appendix, Example 2). This method alleviates considerably 
the discrete optimization procedure since (N - 1)/2 coeffi- 
cients can be quantized by an appropriate choice during 
the design process. 

For the other approximation types, (25) or a similar 
equation does not hold in general. Consequently, there is 
no reason for choosing any particular coefficient as design 
parameter. We will thus adopt the so-called ripple factor as 
well as N as design parameters (see Sections 3.4 and 3.6). 
Starting from the parameters B,, Ai, and Bi occuring in 
(24) the construction of explicit formulas for Chebyshev 
and elliptic filters proceeds in the same way as for Butter- 
worth filters. For determining B,, Ai, and Bi, we use 
results given in [16], [18], [32]. In order to avoid the use of 

o(f) 
t-d I OS 
E , aP 

0 fp fs F/2 f[Hz or kHz] 

j+ PASSBAND-/ ~STOPEANDIJ 

Fig. 6. Design specifications for low-pass filters. 

the esoteric elliptic functions in the design of elliptic re- 
sponse filters we have adopted a method proposed by 
Darlington [ll], [12]. This excellent method leads to an 
elegant and rapid way of designing elliptic filters (see the 
filter degree approximation in Section 3.2, the determina- 
tion of the design margin and coefficient values in Section 
3.6). As we will see in Section III, all design steps can be 
calculated by a pocket calculator without need for using 
filter catalogs [18]-[21] or writing intricate computer pro- 
grams [22]-[24]. 

2.5. Special Structure 

A very important subclass of lattice WDF’s is formed by 
the filters with bireciprocal (also called, self-reciprocal [lo]) 
characteristic function [7]. For these, the following prop- 
erty holds: 

An attenuation of 3.01 dB is then always obtained at one 
quarter of the sampling frequency. Furthermore, e.g., in the 
case of low-pass filters, only either the passband or the 
stopband attenuation can be freely prescribed since the 
attenuation in the range from 0 to F/4 is not independent 
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Input 

2 

-4 

2T 

Fig. 7. Block diagram of the bireciprocal lattice WDF with cascaded 
all-pass sections for N = 5,9,13; .,or N = 7,11,15; .,respectively. 

of that in the range from F/4 to F/2. It is known that 
these filters comprise only (N - 1)/2 adaptors [7], i.e., less 
than half as many as usual lattice WDF’s. 

The block diagram of these filters is particularly simple 
(see Fig. 7). Furthermore, they have some important ad- 
vantages: in the case of interpolation or decimation with a 
factor of two, the sampling rate alteration can be imple- 
mented very economically in a bireciprocal lattice WDF 
[S], [31]; they are optimally scaled for sinusoidal input 
signals (see Section 3.7, also [lo]); simple two’s comple- 
ment value truncation is sufficient instead of magnitude 
truncation to guarantee freedom of zero input granular 
limit cycles (see also [lo]); and these filters are well suited 
for realizing Nyquist pulse shapers [lo]. 

For the explicit formulas, the condition (26) implies 
possibilities for simplifications; these will be mentioned at 
those places where they arise in describing the design of 
Butterworth and elliptic response filters (Chebyshev and 
inverse Chebyshev response shapes are not possible for this 
type of filter). 

III. FILTER DESIGN 

We note that the following design procedure may be 
used directly even without fully understanding the methods 
used to obtain them. 

3.1. Notation 

The design specifications for a low-pass filter are fre- 
quently given as illustrated in Fig. 6, where, 

a, specified minimum attenuation in the stopband in 
decibels, 

aP maximum allowable attenuation spread in the pass- 
band in decibels, 

f, lower edge frequency of the stopband, 
fp upper edge frequency of the passband, 
F sampling frequency. 

Instead of the above parameters, the ripple factors es, ap 
and the transformed frequencies ‘p,, (pp are more conve- 
nient to use in the explicit formulas. These are defined by 

e,,Jzoa,/lo_l (274 

Ep=dm (27’4 

and 

‘p, = tanbf,/F) 
‘pp = t=+fp/F)- 

Accordingly, we have, 

a,=lOlog(l+.$) 

ap =lOlog(l+ ej) 

(294 

(29b) 

and 

f, = i arctancp, (30a) ’ 

fp = f arctan ‘pp. (3Ob) 

3.2. Filter Degree 

The first step in the design of a practical filter is the 
determination of the filter degree (order) N required to 
meet the specifications. 

A minimum value for the degree of the low-pass filter 
can be estimated by using the following approximations: 

cI+G2~~,/~,) 
n,,= 

W,) 
(31) 

where ci, c2, and cg are given in Table I with 

ko={x (324 

and 

ki+l = k? +/G, for i= 0,1,2,3. (32b) 

Note that in practice the values of ki for i > 4 are not 
needed [12]. The value of nti is not necessarily an odd 
number. Taking the smallest odd N satisfying 

Nan,, (33) 

a certain margin remains for the design parameters. This 
margin can be utilized in the procedure of quantizing the 
coefficients into fixed-point values (e.g., by simply round- 
ing or by more involved discrete optimization algorithms 
[31, 151, PW3W. 

It is well known that in the passband, lattice WDF’s 
have excellent sensitivity properties with respect to changes 
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TABLE I 
PARAMETERSFORAPPROXIMATIONOFTIIEDEGREE 

Filter type =1 =2 =3 

Butterworth (maximally flat) 1 1 
k2 

Chebyshev and inverse Chebyshev 1 2 k, 

3.4. Chebyshev Filters 

Determination of the Design Margin: 
We can compute the smallest possible value of the 

passband ripple factor by 

2% Epmin= - 
kN 1 

(39) 

cauer parameter (elliptic) a 4 2k4 

where k, is given by (32). 
Accordingly, we can choose an actual passband ripple 

factor e,* in such a way that its value satisfies the inequali- 
ties 

in the multiplier coefficients, but that they have poor 
sensitivity properties in the stopband [3]-[6]. Therefore, the EP&<Ep*QEP. (40) 
quantization procedure can be alleviated if the major part 
of the available design margin is allocated to the stopband. 

We note that the inequality &pmin Q sp follows from (31), 
(33), and (39). If we choose E; = Ep, the whole design 

3.3. Butterworth (Maximally Flat) Filters margin will be allocated to the stopband, and in the case 
&* = E 

Determination of the Design Margin: P pmin, to the passband. 

Define the auxiliary parameters by 
Determination of the Coefficient Values: 
In terms of E* we define further auxiliary narameters as 

N 
k, = $ &P 2 7; 

N 

/- 8; + (pp’ 

follows: 

(344 

and 
N 

and 

k, = i- &,2 - d 
N (34b) 

i- E,2 -b-t Then, the multiplier values are given by 

Now, we can choose an arbitrary value for y which 2-r 
satisfies the inequalities ‘O’ 2+r 

k, < Y < k,. (35) 
Ai- Bi-1 

y2i-1= A,+B,+l 
We note that the inequality k, d k, follows in a simple 

manner from (31), (33), and (34). If we choose y = k,, the 
1 - Bi 

whole design margin will be allocated to the stopband, and 
y2i= 1+ Bi 

in the case y = k,, to the passband. where 
If k, G 0 and 0 G k,, we can choose y = 0, which leads 

to the bireciprocal case. Ai = r+cos( mi/N) 

Determination of the Coefficient Values: 
Having chosen y in an appropriate way, the multiplier 

Bi = 
1 

w2 + -$ -2cos(2ni/N) 

values are given by the expressions listed hereafter: 
with i=1,2;..,(N-1)/2. 

(41) 

(42) 

(43) 

(4.4) 

(45) 

(46) 

(47) 

1+y-/G The block diagram of the filter is shown in Fig. 5. 
Yo = 

1+y+i/l- 
(36) 

3.5. Inverse Chebyshev Filters 

/G.cos(lri/N)-1 

y2i-1= {q.cos(ai/N)+l 

Y2i = Y 

thus in the bireciprocal case, 

We can observe from (8) that the function ]S,,(jq)] has 

(374 
an inverse Chebyshev high-pass filter response, if the trans- 
fer function ]S,,(icp)] has Chebyshev low-pass response. 
Accordingly, using appropriate frequency transformations 

(37b) an inverse Chebyshev low-pass filter can be very easily 
derived from a suitable Chebyshev low-pass filter. 

yo=O, y,,-,=-tan2(mi/2N), yzi=O (38) 
3.6. Cauer Parameter (Elliptic) Filters 

Determination of the Design Margin: 
respectively, with i = 1,2,. . . , (N - 1)/2. The block di- In this case we-will split the design margin among three 
agram of the filter is shown in Fig. 5, and for the birecipro- intervals: the passband, the stopband, and the transition 
cal case in Fig. 7. band. 
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Now, we will choose the actual value of the lower 
stopband edge frequency f,* and the actual value of the 
passband ripple factor E;, while the actual value of the 
stopband ripple factor E,* will be obtained during the 
calculation process. 

We define the auxiliary parameters by means of 

*o = %/Ep @a) 

thus in the bireciprocal case 

r. = E s @8’$ 
and furthermore, 

*i+ 1 = ri2 + /ri4 - 1 , for i=O,l (49) 

thus in the bireciprocal case, 
1 

E pmin=-. 
m0 

t59b) 

Accordingly, we can choose the actual value E; which 
satisfies the inequalities 

We note that the choice &p* = a,,,,,+, would allocate the 
entire design margin to the passband, and E: = E{, to the 
stopband. Assuming .s; to be chosen in an appropnate way 
the actual value of the stopband ripple factor E: can be 
calculated by 

E* = E*. ,,,’ s D 0 (614 

(50) thus in the bireciprocal case, 

E* = m s 0’ 

for i=4,3,2,1. (51) We note that the inequalities 
Ed min G &,, can be easily proven. 

Then the minimum value of the lower stopband edge Determination of the Coefficient 

@Jb) 

Values: 
frequency can be computed by 

F 
f, min = - arctan (pPxi 

n 

thus in the bireciprocal case, 

F 

We define auxiliary parameters by means of 

f, min = - arctan x0. 
7l 

Accordingly, we can choose the actual value for f,* 
which satisfies the inequalities 

fsmin G f,* =G f*. 
We note that the choice f,* = frmin would allocate the 

for i = 5,4,3,2,1. 
_ ..-__ 

entire design margin to the transition band, and f,* = f,, to 
the passband and stopband. 

In the &reciprocal case we have 

Assuming f,* to be chosen in an appropriate way, we wo= -1. (65b) 
will discuss how to split the remaining design margin Then, the value of the multiplier y. is given by 
among the passband and stopband. 

We compute using (28a) 

(p,* = tan ( vfs*/F) 

then we have 

40=#7ig 

thus in bireciprocal case, 

40 = vi+ 
and furthermore, 

(54 

1+ woqoep 
y” = 1 - woqo’pp (664 

thus in the bireciprocal case, 
yo=o. (6W 

(554 In order to calculate the other multiplier values we 
define auxiliary parameters for i = 1,2,. . . , (N - 1)/2 

(55b) c4.i = * 
sin E 

N 

(67) 

4i+l =q:+Jfi, for i=O,1,2,3, 

m3 = $GJN 

for i=3,2,1. (58) 
Then, we can compute the smallest possible value of the 

passband ripple factor by 
Es 

Epmin= --y (594 
m0 

forj=4,3,2,1 (68) 

(69) 

Bi = 4 + Yi’ .(qo~p)2 

l+CwOYi)’ 
(704 

A, = 
- 2woqoQ$ 

l+ CwOYi)’ 



thus in the bireciprocal case 

B,=l (7 w 

Then, the other multiplier values are for i = 1,2, * . . , 
(N - 1)/2 

Ai- B,-1 
y2i-1= A,+ B,+l 

Bi ‘- 
y2i - 1 + Bi 

thus in the bireciprocal case, 

A,-2 
YZi-1- Ai+2 

(724 

(734 

(72b) 
yzi = 0. t73b) 

The block diagram of the filter is shown in Fig. 5 and for 
the bireciprocal case in Fig. 7. 

Critical Frequencies: 
We can easily calculate the critical frequencies in the 

stopband and the passband using the above results. The 
transmission zeros (see Fig. 8) are given by 

fm,i= ~arct~~q,cp,/Yi)~ fori=1,2;-.,(N-1)/2. 

(74 

Similarly, the frequencies of zero passband loss (see also 
Fig. 8) are given by 

fO,i=~~c’an(~O~pYi)~ for i=1,2;--,(N-1)/2. 

(75) 
Accuracy: 
Darlington himself has already demonstrated that the 

method proposed by him [ll], [12] has excellent accuracy 
properties if q4 > 100. The author of the present paper can 
support this fact since a comparison of a large number of 
examples computed on the one hand by the formulae given 
above and on the other, for controlling purposes, by using 
the values given in the new design catalogue from Saal [21] 
leads to the following observation. Using a TI-59 pocket 
calculator, all results were in agreement even in the most 
critical cases (N = 15) at least up to eight decimal digits. In 
general, this precision is more than needed in practice. 

3.7. Dynamic Range 

It is well-known that WDF’s have inherently good dy- 
namic range [2]. In. this section we will see that lattice 
WDF’s with lattice branches realized by cascaded first and 
second degree all-pass sections are scaled in the best possi- 
ble way for a sinusoidal excitation. It can be shown [33] 
that using certain adaptor equivalences [34] the amplitudes 
of the internal signals at all ports (see Figs. 3 and 4) do not 
exceed the input level at steady-state conditions for any 
frequency. There exists, however, always a frequency, say 

oL fo 1 fo 2 fo 3 F/2 f I I I 

Fig. 8. The critical frequencies of a Cauer parameter (elliptic) filter (for 
N = 7). 

f,, where the maximum just reaches the input level. This 
frequency is f, = 0 or F/2 for a first degree section. For a 
second degree section we can prove that 

if yzi-i>O 

if yzi-i<O 

is the frequency at which the signal levels at ports 2 and 3 
(see Fig. 4) just reach the input level. The maximal signal 
level at port 4 (see Fig. 4) for unity input level is equal to 

1, if yzi-l> 0 

l- Y2i 

l+YZi ’ 
if yzi-l<O and Y2i’O 

and 
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J 
l+ Y2i 

l-YZi ’ 
if yzipl < 0 and Yzi < 0. 

Accordingly, bireciprocal filters are always scaled in the 
best possible way, and in the other cases (except for the 
very narrow band cases) nearly as well. In Fig. 9 are shown 
the signal-flow diagrams of the two-port adaptors which 
lead to this scaling. We can observe that a different struc- 
ture has to be chosen depending on the multiplier value y. 
Furthermore, we can see that the multiplier coefficient (Y 
which has to be implemented is always positive and not 
larger than one-half. Since we do not need additional 
scalers to achieve L, scaling [35] the designation “inher- 
ently scaled in the best possible way” seems to be ap- 
propriate for this type of filter. 

3.8. Remarks 

It should be stressed that WDF’s represent a large family 
of digital filters since one can choose from a large number 
of reference filters each leading to a different structure [2]. 
From this family, we have discussed in this paper only one 
member, which represents an interesting and important 
structure; of course, this choice does not have to be opti- 
mal in all cases (e.g., for the narrow band case, there are 
more suitable WDF structures). 

Even in the absence of any protective measures (except 
for the need of one or two guard bits inside of the adaptors 
for managing overflow [36], [37], WDF’s tend to be almost 
free of limit cycle (parasitic) oscillations of either type, i.e., 
of overflow as well as granularity oscillations. Further- 
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Fig. 9. Signal-flow diagrams of the two- ort adaptor yielding optimal 
scaling for sinusoidal excitation. (Note t%at in the first diagram of the 
second last row, a should be replaced by - a.) 

more, it is well-known [38], [39] that saturation characteris- 
tics at the adaptor outputs guarantee forced response sta- 
bility [40], that looped stability can be ensured [41], etc. 
For freedom from zero-input granularity limit cycles mag- 
nitude truncation of the state variables is usually sufficient 
[36]. In the bireciprocal case, however, it is easily shown 
(see also [lo]) that simple two’s complement value trunca- 
tion is sufficient for zero input stability. 

Furthermore, although we have restricted ourselves in 
this paper to designing low-pass filters, the design of a 
bandpass filter can be carried out in a straightforward 
manner using the usual network transformations [16], 
[18]-[21]. We note that a WDF is inherently a branching 
(bidirectional) filter, because not only the transmittances 
(4), but also the reflectances (3) are available as transfer 
functions, and these functions are complementary (see, e.g., 
(8)). This fact can be utilized to design high-pass and 
bandstop filters simply from proper low-pass and bandpass 
filters, respectively, using the complementary outputs in 
Figs. 5 or 7. 

The design procedures described above will be illustrated 
hereafter in some detail by a number of examples. Al- 
though the design process has been simplified to the extent 
that a pocket calculator is sufficient for carrying out the 
necessary calculations, it is recommended to write a com- 
puter program for one’s own use. In order to alleviate the 
debugging procedure the examples presented have been 
selected in such a way that most of the formulas presented 
above can be checked numerically at least once (see Ap- 
pendix). 

Finally, we have to stress that care must be taken not to 
confuse the lattice wave digital filters with the lattice 
digital filters as proposed by Gray and Markel [43]-[45]. 
Indeed, in the case of WDF’s the term lattice refers to the 

structure of the reference filters, while in the Gray and 
Markel terminology it refers to the structure of the signal- 
flow diagram of the actual digital filter. 

IV. CONCLUSION 

Digital filters are of great importance in digital signal 
processing systems. This paper was intended to aid the 
design engineer in solving most of his filter design prob- 
lems without the need for the highly complex computations 
involved in network synthesis methods. We have seen that 
all design steps (starting from the design specifications, 
determination of the degree of the filter, manageing of the 
design margin, determination of the coefficient values, 
choosing signal-flow diagrams scaled in the best possible 
way) can be done in a simple top down way for lattice 
wave digital filters when both lattice branches were realized 
by cascaded first and second degree all-pass sections. 

Accordingly, these filters with the proposed design 
method are very appropriate for using as input parts (specs 
to signal-flow diagram) in silicon compilers for digital 
filters [46]-[48] or in high level language programs for 
digital signal processors [49], [50]. 

APPENDIX 

NUMERICAL EXAMPLES 

Example 1 

Butterworth (maximally flat) low-pass filter: 
a) Requirements: 

Passband: fp = 3.4 kHz aP = 0.5 dB 

Stopband: -f,=6kHz a,= 65 dB 

Sampling frequency: F = 16 kHz. 
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(b) 

I 

aw 

Fig. 10. Ninth degree bireciprocal WDF with Butterworth response. (a) 
Block diagram. (b) Signal-flow diagram. (c) Attenuation characteristic. 

b) Design procedure: 
Using (27), (28) the design parameters are given by 

E, = d1O65/‘o - 1 = 1778 

Ep = ~3i==x = 0.3493 

‘p, = tan (m6/16) = 2.414 

‘pP = tan( rr3.4/16) = 0.7883. 

A minimum degree can be estimated by (3 

In (1778/0.3493) 
nmin= ln(2.414/0.7883) = 763* 

.), and (32a) 

This means we must choose minimum N = 9. Now, we 
compute the uuxilialy parameters given by (34) 

k = ?= -0.78832 = o 1204 

’ 9Jo.34932 +0.78832 ’ 

k 
s 

= ?i=-2.4142 = -o 0498 

7i?% +2.4142 . . 

Since k, < 0 and k, > 0 we can choose the bireciprocal 
case. The nonzero coefficient values from (38) are 

y1 = - tad (7r/18) = -0.03109 

y3 = - tan2 (2~/18) = -0.13247 

ys = - tan2 (31~/18) = -0.33333 

y7 = - tan2 (4rr/18) = -0.70409. 

In Fig. 10(a)-(c) we can see the block diagram, the 
signal-flow diagram with optimally scaled structure, and 
the computed attenuation characteristic of this filter, re- 
spectively. 

Example 2 

Butterworth (maximally flat) low-pass filter: 
a) Requirements: 
All requirements are the same as in Example 1 with the 

only exception: a, = 55 dB. 
b) Design procedure: 
In this case from (27a) we have 

E, = 562.3. 
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The other values of design parameters are the same as in Comparing Fig. 10 to Fig. 11 we can observe that the 
Example 1. structure in Fig. 10 is simpler than that in Fig. 11 in spite 

The estimation of the minimum degree gives in this case of the larger degree of the filter in Example 1. The simplic- 

nmin= 6.60 
ity of the structure in Example 1 follows from the fact that 
this filter has bireciprocal characteristic function. 

which means that N = 7 would be sufficient. Now, we Example 3 
compute the auxiliary parameters, we have Chebyshev low-pass filter: 

k, = 0.087 a) Requirements: 

and Passband: f,=3kHz aP= 1dB 

k, = 0.023. Stopband: f,=5 kHz a, = 40 dB 

We can conclude that now for y we can not choose the Sampling frequency: F = 16 kHz. 

value zero (i.e., in this case we have not bireciprocal filter). 
However, we can observe that the choice 

b) Design procedure: 
Using (27), (28) the design parameters are given by 

E, = 99.995 

Ed = 0.5088 

satisfies (35) and gives simultaneously the larger part of the 
design margin to the stopband as was recommended. Fur- 
ther, this value leads to a very simple realization of the 
required multiplication. 

‘p, = 1.4966 

‘pp = 0.668 179. 

A minimum degree can be estimated by (31) and (32) 
Using this value for y, the multiplier coefficient values 

are given by (36) and (37) 1.4966 
k1 = .66818 

-+/==4.244 

1+16- l- 16 
d ( ) 

y”= l+;+{$ =“.03128 

/ , 

l- -$ cos(r2/7)-1 

Y3= , = -0.23284 4 

\i 
l- -& cos(a2/7)+1 

l- -$ cos(Vr3/7)-1 

Ys= , = -0.63655 

and 

1 
y7, = y4 = Y6 = 16 

In Fig. 11(a)-(c) we can see the block diagram, the 
signal-flow diagram with optimally scaled structure and the 
computed attenuation characteristic of this filter, respec- 
tively. We mention that in certain cases a realization with 
alternatively positioned delay elements (see Fig. 4) could 
be appropriate [42]. 

nmin= 
ln(2.99.995/0.5088) = 4 I3 

ln4.244 
. . 

This means we must choose minimum N = 5. Now, we 
compute the design margin. From (39) we have 

E = 2.99.995 = o 145 

‘- (4.244)5 ’ . 

Let E; = 0.4 which corresponds from (29b) to 

a: =1010g(l+0.42) = 0.645 dB 

and this choice satisfies (40) and splits the design margin 
according to the recommendation. 

Then, the auxiliary parameters are given by (41), (42) 

w= vw=I.390198 

’ 
1.390198 

00.668179 

= 0.448 265. 

Then the coefficient value y. from (43) is given by 

For the other coefficient values we compute first 

w2 + L = 2.450075 
W2 

f$ = 0.111616 
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28 

07 

5 

8L 

5 

55 

5 

0.031 28 

0.232 84 

0.053 07 

0.363 45 

a ea 2. aa 4.88 e.00 a.00 

(4 
- C/kHz 

Fig. 11. Seventh degree WDF with Butterworth response. (a) Block 
diagram. (b) Signal-flow diagram. (c) Attenuation characteristic. 

then, from (44), (45), (46) and (47) we have for i = 7 

A, = 0448265cos(~/5) = 0.362654 

B, = (2.450075 -2cos(2~/5)}~0.111616 

= 0.204485 
0.362654-0.204485-l 

‘l= 0.362654 + 0.204485 + 1 = - o.5372 

and for i = 2 

A, = 0448265cos(2~/5) = 0.138522 

B, = { 2.450075 - 2cos(4?r/5)} .0.111616 
= 0.454 066 

0.138522 - 0.454066 - 1 
y3 = 0.138522+0.454066+1 = -“.8260 

In Fig. 12(a)-(d) we can see the block diagram, the 
signal-flow diagram with optimally scaled structure, the 
computed attenuation characteristic of this filter and the 
passband attenuation behavior, respectively. 

Example 4 

Cauer parameter (elliptic) low-pass filter: 
a) Requirements: 

Passband: fp = 3.4 kHz aP = 0.2 dB 

Stopband: f, = 4.6 kHz a,= 65 dB 

Sampling frequency: F = 16 kHz. 
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Y 

T 

% 

Y,,=O.6338 
Y, .-0.537 2 
y2=0.6605 
y,=-0.8260 
y, 5 0.375 5 

v2 

T 

(4 

a,= I-~~~0.366 2 
(12' 1*y3= 0.174 0 

aL = l+ y, = O.L62 8 

"5' I- y2= a 339 5 + a T 

(b) 

aaa 
a. aa 

___- 
1. aa 2. aa 3. aa 

(4 
Fig. 12. Fifth degree WDF with Chebyshev response. (a) Block di- 

agram. (b) Signal-flow diagram. (c) Attenuation characteristic. (d) Pass- 
band behavior. 
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b) Design procedure: 
Using (27), (28) the design parameters are given by 

W4-(58) 

(p,* = tan (a-4.5/16) = 1.218 503 526 

E, = 1778.279 129 

ep = 0.217 091 1054 

‘p, = 1.268 493 953 

cpp = 0.788 336 4346. 

A minimum degree can be estimated by (31) and (32) 

k,=/z=l.26849395 

k, = 1.26849395’ + \/l .2684944 - 1 = 2.869 683 

k, = 2.869683’ + J2.8696834 - 1 =16.409 22 

k, = 16.409222 + \/16.409224 - 1 = 538.523 

k, = 538.523’ + dm = 580014 

n,,= 
8.1n(4*1778/0.2171) = 5 96 

ln(2.580014) ’ * 

This means we must choose minimum N = 7. 
Determination of the Design Margin: 
We compute the parameters from (48a), (49)-(51) 

rl=ri+\lr,“-l =1.638279117x104 

r2=rf+/rp-1 =5.367916929x108 

x4 = ; ( 1/2r2)4 = 7.235 150 91 x lo4 

x3=/+(x4+:) =190.1992496 

x2=/+(x3+:) =9.752038435 

x~=,/+(~~+~) =2.21975011 

x,=,/~=l.l55476367. 

Then the minimum value of stopband edge frequency from 
(524 

fsmin= F arctan(0.788336,1.155476’) = 4.13 kHz, 

i.e., we can choose an actual value for f,* which satisfies 

4.13 Q f,* < 4.6. 

Now, let f,* = 4.5 kHz. Then, we compute and store for 
later application the auxiliary parameters from (54) (55a), 

q. = (p,* = 1.243 247 503 
‘PP 

q1 = q; + 1/404&i = 2.724 256 011 

q2 = q: + /& - 1 = 14.775 46184 

q3 = q; + ,/m = 4.366 262 551 x 10’ 

q4 = 43’ + ,/&i = 3.812 849 732 X lo5 

m3=~(~)7=1.9361941X1020 

mI=\i$(m2+$) =7.013983324X104 

mo=/~(mI+$) =187.2696362. 

The available minimum value of the passband ripple factor 
from (59a) 

1778-279 = 0 0507 
epmin= 187.2696’ . 

i.e., we can choose an actual E; satisfying (60): 

0.0507 < &p* < 0.2. 

Now, we choose the actual value ep* = 0.18 which corre- 
sponds to a: = 0.138 48 dB from (29b). 

The actual stopband ripple factor will be obtained from 
(614 

E* = &p*. rni = 6312.584 993 s 

which gives from (29a) the actual value for a: 

a* =1010g(l+6312.62) = 76.00 dB. s 

Determination of the Coefficient Values: 
We compute first the auxiliary parameters given by (62) 

(63) (64) and (65a). We will have 

g1 = 0.18 
‘+/~=11.20039369 

g, = m,g, + ~(m,g,)2+l =1.571 1875X106 

g3=m2g2+ J (m2g2)2+1 =3.0918432~10’~ 

w5=/~+/(~)‘+1 =3.849412846 
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= - 243.270 695 9 

= - 8.232 114 427 

= - 1.488 597 056 

= -0.3285040148. 

Then the coefficient value for y. from (66a) 

1+ wo4o’p, 
y” = 1 - w,q,cp, 

= 0.512 898 33. 

In order to calculate the other multiplier values, we 
compute first the auxiliary parameters given by (67), (68), 
(69), (7Oa), and (71a). 

We will have for i = 1 

381284.9732 
C4,l = 

sin E 
= 8.787 722 121 x lo5 

7 

c3,i= +-( c4,i+ $) =1.006 3209x10’ 

c2,,=+-(c3,i+&)=34.05382041 

Cl.1 - zq, -+,+$)=6.25550344 

Co,1 - 2 
-~(c1,r+~)=2.580082671 

y, = $ = 0.387 584 4799 

B, = w”” + ” 
1+boY1)2 

( qoqP)2 = 0.244 007 9871 

A,= l-$o;;2 Jl-(q:+;-Y:)Y: 
= 0.527 570 5195 

for i = 2 in a similar way we have 

381284.9732 
C 4.2 = 2lr 

=4.876 817 854x10’ 
sin - 

7 

c3,2 = 5.584 6594x lo2 

C 2,2 = 18.898 4865 

c1,2 = 3.478 270 896 

co,2 = 1.514 489 294 

y2 = & = 0.660 288 5895 

B, = 0.498 984 7123 

A, = 0.297 579 7452 

and for i = 3 we have 

381284.9732 
c4,3 = = 

3a 
3.910 904 267 x 10 5 

sin - 
7 

c3,3 = 4.478 549 128 x lo2 

c2,3 = 15.155 436 44 

c1,3 = 2.793 683 726 

co 3 = 1.267 500 656 

y3 = 0.788 954 2267 

B, = 0.657 420 6341 

A, = 0.090 789 8113. 

Then the other coefficient values from (72a) and (73a) 

A,- B,-1 
“= A,+ B,+l 

= - 0.404 40628 

l-B, 
- = 0.607 70672 

“= l+ B, 

A,-B,-1 
“= A,+ B,+l 

= - 0.668 72355 

l-B, 
- = 0.334 23642 

“= l+ B, 

A,-B,-1 
y5= A,+B,+l = - 0.896 134 00 

l-B, 
- = 0.206 694 28. 

y6= l+ B, 

In Fig. 13(a)-(d) we can see the block diagram, the 
signal-flow diagram with optimally scaled structure, the 
computed attenuation characteristic of this filter and the 
passband attenuation behavior, respectively. 

Additionally, we can compute the critical frequencies 
from (74) and (75). We have 

f,,i = f arctan( qo’p,/y,) = 6.082 08 kHz 

foo,2 = 4.980 62 kHz 

fm,3 = 4.548 16 kHz 

and 

fo,I = f arctan ( qo’p, y,) = 1.848 92 kHz 

fo,2 = 2.925 23 kHz 

fo,3 = 3.352 27 kHz. 

Example 5 

Cauer parameter (ehiptic) bireciprocal low-pass filter 
a) Requirements: 

Stopband: f, = 16.3 kHz a, = 65 dB 

Sampling frequency: F = 64 kHz. 
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(4 

1 Output 

Y, = 0.51290 

Y, = -O.&O& L1 

yz = 0.60771 

v3 = -0.66872 

v, = 0.334 24 
y, = 4896 I3 

V, = 0.20669 

a,= l-y0 = 0.487 1 

ap "y3 = 0.331 3 

q= y, i 0.33L 2 

La“IY,I = O.COLL 
&j= I-y* = 0.392 2 

as= by5 = CL 103 8 

= 0.2067 

(b) 

(4 
Fig. 13. Seventh degree WDF with elliptic response. (a) Block diagram. 

(b) Signal-flow diagram. (c) Attenuition characteristic. (d) Passband 
behavior. 
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=b 
Output 

y,= -0.063978 

y3=-0.226119 

y5=- 0.L23 068 

y,= -0.602L22 

yg= - 0.7.'41 327 

y,, I -0.839 323 

y,,= - 0.905 567 

y,5= - 0.950 EL7 

Y,~= -0.984 721 

(4 

a,= Iv, 1 q 0.226 II9 
"2 l+y7 = 0.397 578 

a3= l+y,, = 0 160 677 
q= l+y,,= O.OL9 I53 
(4=Iy, 1 = 0.063 978 

a6= Iv51 = O.L23 068 
a7= I*yg = 0.258673 

(Is' Iq3= 0.09& II33 
acJ= l'y,?= 0.015 279 

(b) 

-- 

I0 24.00 28 

Fig. 14. Nineteenth degree bireciprocal WDF with elliptic response. (a) 
Block diagram. (b) Signal-flow diagram. (c) Attenuation characteristic. 
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Operating frequency 32 kHz -+-6LkHr 

Fig. 15. Nineteenth degree interpolation branching filter derived 
the filter given in Fig. 14. 

from 

b) Design procedure: 
Using the restriction (26) and the formulas (27), (28) the 

design parameters are given by 

E, = 1778.279 129 

Ed = $ = 0.000 562 341 

‘p, = 11029 894 830 

‘pp = $ = 0.970 972 929. 
s 

A minimum degree can be estimated by 
k, = 1.029 894 83 

k, = 1.414 306 312 

k, = 3.732 616 071 

k, = 27.828 91162 

k, = 1548.895 998 

n,,=16.27. 

(31) and (32) 

This means we must choose minimum N = 17, but we 
will choose N = 19 because of the larger design margin. 

Determination of the Design Margin: 
Now, we choose f,* = f, = 16.3 kHz, i.e., the whole de- 

sign margin will be given to the stopband (we note that in 
the actual case the values from (48b), (49)-(51), and (52b) 
would not be necessary to compute). Since in this case 
(p,* = ‘p, we have that q. = k,, q1 = k,, q2 = k,, q3 = k,, 
and q4 = k,. 

From (57) and (58) we have 

m3=~(fi)19=7.3108254X1032 

m2 = J(-$LJF$J =1.911 9134X1016 

Then, from (59b) we 
passband ripple factor 

1 

have the minimum value of the 

Epmin=- = 1.430 228 555 x 10 - 4. 
m0 

We choose E* = E , i.e., the whole design margin will 
be given to thl sto;bzd and in the same manner to the 
passband according to the bireciprocal property (see (26)). 
From (61b) we have 

E$ = m, = 6991.889 487 

which corresponds to a loss value from (29a) 

emax =lOlog(l+ rng) = 76.89dB. 

Determination of the Coefficient Values: 
In the bireciprocal case we need compute only the aux- 

iliary parameters given by (67)-(69) and (71b). 
We will have for i = 1 

1548.895998 
C4,l = . r = 9410.370 02 

sm 19 

y, = & = 0.252 814 9249 

, , 
4=&++$qi 

= 1.759 474 658. ml= \ii(m2+$--) =97773037.2 

Then from (72b) 

m,= /m=6991.889487. * A,-2 
- = -0.063 978. 

“7 A,+2 
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In a similar way we obtain for i = 2 until 9 
y3 = -0.226 119 

ys = - 0.423 068 

y7 = -0.602 422 

y9 = -0.741 327 

yll = - 0.839 323 

y13 = - 0.905 567 

y15 = -0.950 847 

y17 = -0.984 721. 

In Fig. 14(a)-(c) we can see the block diagram, the 
signal-flow diagram with optimally scaled structure and the 
computed attenuation characteristic of this filter, respec- 
tively. 

We note that sampling rate alteration by factor two can 
be very economically combined with this filter. In Fig. 15 
we can see an interpolation branching filter based on the 
above design. We can observe that both lattice branches 
operate on the lower sampling rate (32 kHz) and the 
output sequence is obtained by interleaving the output 
sequences of the lattice branches. We mention finally that 
this type of filters can be properly used in certain trans- 
multiplexer applications [lo], [51]. 
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On Error-Spectrum Shaping in State-Space 
Digital Filters 

P. P. VAIDYANATHAN 

Abstract -A new scheme for shaping the error spectrum in state-space 
digital filter structures is proposed. The scheme is based on the application 
of diagonal second-order error feedback, and can be used in any arbitrary 
state-space structure having arbitrary order. A method to obtain noise-opti- 
mal state-space structures for fixed error feedback coefficients, starting 
from noise optimal structures in absence of error feedback (the Mullis and 
Roberts Structures), is also outlined. This optimization is based on the 
theory of continuous equivalence for state-space structures. 

I. INTRODUCTION 

The use of error spectrum shaping (ESS) for roundoff noise 
reduction in (narrow band) recursive digital filters is well known, 
and a number of interesting research contributions in this area 
have appeared [l]-[5] in the last few years. The application of 
this idea to state-space structures is mentioned in [2], and some 
studies in this connection have already been rep-orted in [5]. In 
[7], Mullis and Roberts clarify the relation between error feed- 
back (EFB) techniques and double precision implementations in 
state-space structures, among others. 

The purpose of this paper is to outline a new procedure for 
choice of EFB coefficients in state-space structures. Specifically, 
we extend the feedback scheme proposed in [2] and [5] by 
incorporating an additional higher order matrix term. We do not 
consider error feedforward in this paper. We choose the EFB 
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coefficients such that each noise source is “shaped” independent 
of others. In the resulting structures, each noise source is essen- 
tially replaced by an equivalent source which is no more white, 
but has zeros on the unit circle of the z-plane, at suitable 
locations. Consequently the major portion of noise power moves 
into the stopband. The overall noise is thus reduced, by the time 
it reaches the filter output. (It should be noticed that the idea of 
introducing zeros into the noise spectrum is itself not new, and is 
indeed the basis in [l].) 

In such a structure, we essentially have “colored” noise sources, 
and the optimal state space structure for a given noise-spectral 
shaping is in general different from that for white noise sources. 
Based on the fundamental results on minimum-noise state-space 
structures [6] for uncorrelated white noise sources, we outline an 
iterative procedure for arriving at the minimum-noise structure 
with fixed EFB. The procedure is based on applying a sequence 
of similarity transformations in such a way that at each iteration 
there is an improvement in the objective function. 

In Section II we deal with the shaping of error spectrum for a 
given state-space structure. In Section III, we outline the state- 
space optimization for a given ESS shaping. 

II. NOISE SHAPING 

Consider the standard state-space representation: 

x(n+l)=Ax(n)+Bu(n) 

y(n)=Cx(n)+Du(n). 

(14 

(lb) 

Here A is an N X N matrix, B is N xl, C is 1X N, and D is 
1 X 1. We assume that the only quantization involved is in the 
implementation of Ax(n), as this is the only error that propa- 
gates through the feedback path. Fig. 1 shows the conventional 
EFB scheme, where the error vector due to the vector quantizer is 
fedback through a delay (to avoid delay free loops). The matrix 
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