Estimation Theory
 Fredrik Rusek

Chapter 12

Chapter 12 - Linear Bayesian Estimation

Summary of chapters 10 and 11

- Bayesian estimators are injecting prior information into the estimation
- Concepts from classical estimation breaks down
- MVU
- Efficient estimator
- unbiasedness
- Performance measure change: variance -> Bayesian MSE
- Optimal estimator for Bmse: $\mathrm{E}(\Theta \mid \mathrm{x})$. This is the MMSE estimator
- MMSE is difficult since
- Posterior is hard to find $p(\theta \mid x)$
- If we can find $p(\theta \mid x)$, then $E(\theta \mid x)$ is still difficult due to integral
- Conjugate priors simplify finding $p(\theta \mid x)$. Posterior has same distribution as prior (with other parameters). Useful when the posterior acts as prior in a sequential estimation process.
- Other risk functions than the Bmse exists.
- MAP estimation is solution to hit-and-miss risk
- Conditional Median is solution to a linear risk function
- Invariance does not hold for MAP
- Bayesian estimators can be used for deterministic parameters, but work well only for parameter values that are close to the prior mean

Chapter 12 - Linear Bayesian Estimation

When an optimal Bayesian estimator is hard to find, we can resort to a linear estimator

$$
\hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}
$$

Chapter 12 - Linear Bayesian Estimation

When an optimal Bayesian estimator is hard to find, we can resort to a linear estimator

$$
\hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}
$$

This is the same method as the BLUE, but we now make the following changes:

Chapter 12 - Linear Bayesian Estimation

When an optimal Bayesian estimator is hard to find, we can resort to a linear estimator

$$
\hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}
$$

This is the same method as the BLUE, but we now make the following changes:

Remove Unbiasedness constraint

Chapter 12 - Linear Bayesian Estimation

When an optimal Bayesian estimator is hard to find, we can resort to a linear estimator

$$
\hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}
$$

This is the same method as the BLUE, but we now make the following changes:

Remove Unbiasedness constraint
Change cost function from variance to Bmse $\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]$

Chapter 12 - Linear Bayesian Estimation

When an optimal Bayesian estimator is hard to find, we can resort to a linear estimator

$$
\hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}
$$

This is the same method as the BLUE, but we now make the following changes:

Remove Unbiasedness constraint
Change cost function from variance to Bmse $\quad \operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]$

An optimal estimator within this class is termed the

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$
Cost function

$$
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]
$$

Take differentials with respect to a_{N}

$$
\frac{\partial}{\partial a_{N}} E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]=
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$
Cost function

$$
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]
$$

Take differentials with respect to a_{N}

$$
\frac{\partial}{\partial a_{N}} E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]=-2 E\left[\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right]=0
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$
Cost function

$$
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]
$$

Take differentials with respect to a_{N}

$$
\begin{gathered}
\frac{\partial}{\partial a_{N}} E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]=-2 E\left[\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right]=0 \\
a_{N}=E(\theta)-\sum_{n=0}^{N-1} a_{n} E(x[n])
\end{gathered}
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]
$$

Plug in a_{N} into the cost function $a_{N}=E(\theta)-\sum_{n=0}^{N-1} a_{n} E(x[n])$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right] & =E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
& =E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\}
\end{aligned}
$$

Plug in a_{N} into the cost function

$$
a_{N}=E(\theta)-\sum_{n=0}^{N-1} a_{n} E(x[n])
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right] & =E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
& =E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
\text { nto vector notation } & =E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\}
\end{aligned}
$$

Assembly into vector notation

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right] & =E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
& =E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
& =E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right\}^{2}\right\} \text { Generates } 4 \text { terms }
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
& \operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
&=E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
&=E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\} \\
&=E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]-E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\theta-E(\theta))\right] \\
& \quad E\left[(\theta-E(\theta))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]+E\left[(\theta-E(\theta))^{2}\right]
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
& \operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]= E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
&= E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
&= E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\} \\
&=E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]-E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\theta-E(\theta))\right] \\
& \quad-E\left[(\theta-E(\theta))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]+E\left[(\theta-E(\theta))^{2}\right]
\end{aligned}
$$

Observe: a is not random, can be moved
outside from expectation operator

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
& \operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\sum_{n=0}^{N-\mathbf{1}} a_{n} x[n]-a_{N}\right)^{2}\right] \\
&=E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
&=E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\} \\
&=\frac{E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]-E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\theta-E(\theta))\right]}{-E\left[(\theta-E(\theta))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]+E\left[(\theta-E(\theta))^{2}\right]} \\
&=\mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]= & E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
= & E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
= & E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\} \\
= & E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]-E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\theta-E(\theta))\right] \\
& \quad E\left[(\theta-E(\theta))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]+E\left[(\theta-E(\theta))^{2}\right] \\
= & \mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-\mathbf{a}^{T} \mathbf{C}_{x \theta}
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
& \operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
&=E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
&=E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\} \\
&= E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]-E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\theta-E(\theta))\right] \\
&-E\left[(\theta-E(\theta))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]+E\left[(\theta-E(\theta))^{2}\right] \\
&=\mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-\mathbf{a}^{T} \mathbf{C}_{x \theta}-\mathbf{C}_{\theta x} \mathbf{a}
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
& \operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]= E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
&= E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
&= E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\} \\
&= E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]-E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\theta-E(\theta))\right] \\
& \quad-E\left[(\theta-E(\theta))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]+E\left[(\theta-E(\theta))^{2}\right]
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\begin{aligned}
& \operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]= E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right] \\
&= E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\} \\
&= E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\} \\
&= E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]-E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\theta-E(\theta))\right] \\
& \quad-E\left[(\theta-E(\theta))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]+E\left[(\theta-E(\theta))^{2}\right] \\
&= \mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-\mathbf{a}^{T} \mathbf{C}_{x \theta}-\mathbf{C}_{\theta x} \mathbf{a}+C_{\theta \theta} \\
&= \mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-2 \mathbf{a}^{T} \mathbf{C}_{x \theta}+C_{\theta \theta}
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Finding the LMMSE estimator $\quad \hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}$

$$
\operatorname{Bmse}(\hat{\theta})=E\left[(\theta-\hat{\theta})^{2}\right]=E\left[\left(\theta-\sum_{n=0}^{N-1} a_{n} x[n]-a_{N}\right)^{2}\right]
$$

$$
=E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E(x[n]))-(\theta-E(\theta))\right]^{2}\right\}
$$

$$
\frac{\partial \operatorname{Bmse}(\hat{\theta})}{\partial \mathbf{a}}=2 \mathbf{C}_{x x} \mathbf{a}-2 \mathbf{C}_{x \theta}
$$

$$
=E\left\{\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))-(\theta-E(\theta))\right]^{2}\right\}
$$

$$
\begin{aligned}
\mathbf{a}=\mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}= & E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]-E\left[\mathbf{a}^{T}(\mathbf{x}-E(\mathbf{x}))(\theta-E(\theta))\right] \\
& -E\left[(\theta-E(\theta))(\mathbf{x}-E(\mathbf{x}))^{T} \mathbf{a}\right]+E\left[(\theta-E(\theta))^{2}\right]
\end{aligned}
$$

$$
=\mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-\mathbf{a}^{T} \mathbf{C}_{x \theta}-\mathbf{C}_{\theta x} \mathbf{a}+C_{\theta \theta}
$$

$$
=\mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-2 \mathbf{a}^{T} \mathbf{C}_{x \theta}+C_{\theta \theta}
$$

Chapter 12 - Linear Bayesian Estimation

Collect the results using vector notation

$$
\begin{aligned}
\frac{\partial \operatorname{Bmse}(\hat{\theta})}{\partial \mathbf{a}} & =2 \mathbf{C}_{x x} \mathbf{a}-2 \mathbf{C}_{x \theta} \\
\mathbf{a} & =\mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\theta} & =\sum_{n=0}^{N-1} a_{n} x[n]+a_{N} \\
& =\mathbf{a}^{T} \mathbf{x}+a_{N}
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Collect the results using vector notation

$$
\begin{aligned}
\frac{\partial \mathrm{Bmse}(\hat{\theta})}{\partial \mathbf{a}} & =2 \mathbf{C}_{x x} \mathbf{a}-2 \mathbf{C}_{x \theta} \\
\mathbf{a} & =\mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\theta} & =\sum_{n=0}^{N-1} a_{n} x[n]+a_{N} \\
& =\mathbf{a}^{T} \mathbf{x}+a_{N}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\theta} & =\mathbf{C}_{x \theta}^{T} \mathbf{C}_{x x}^{-1} \mathbf{x}+E(\theta)-\mathbf{C}_{x \theta}^{T} \mathbf{C}_{x x}^{-1} E(\mathbf{x}) \\
& =E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Computing the Bmse cost

$$
\begin{aligned}
\operatorname{Bmse}(\hat{\theta}) & =\mathbf{a}^{T} \mathbf{C}_{x x} \mathbf{a}-\mathbf{a}^{T} \mathbf{C}_{x \theta}-\mathbf{C}_{\theta x} \mathbf{a}+C_{\theta \theta} \\
\mathbf{a} & =\mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}
\end{aligned}
$$

$$
\operatorname{Bmse}(\hat{\theta})=C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}
$$

Schur complement

Chapter 12 - Linear Bayesian Estimation

Connections

$$
\operatorname{Bmse}(\hat{\theta})=C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}
$$

We have seen the expression for the BMSE before
Theorem 10.2 (Conditional PDF of Multivariate Gaussian) If \mathbf{x} and \mathbf{y} are jointly Gaussian, where \mathbf{x} is $k \times 1$ and \mathbf{y} is $l \times 1$, with mean vector $\left[E(\mathbf{x})^{T} E(\mathbf{y})^{T}\right]^{T}$ and partitioned covariance matrix

$$
\mathbf{C}=\left[\begin{array}{ll}
\mathbf{C}_{x x} & \mathbf{C}_{x y} \tag{10.23}\\
\mathbf{C}_{y x} & \mathbf{C}_{y y}
\end{array}\right]=\left[\begin{array}{cc}
k \times k & k \times l \\
l \times k & l \times l
\end{array}\right]
$$

so that

$$
p(\mathbf{x}, \mathbf{y})=\frac{1}{(2 \pi)^{\frac{k+1}{2}} \operatorname{det}^{\frac{3}{2}}(\mathbf{C})} \exp \left[-\frac{1}{2}\left(\left[\begin{array}{r}
\mathbf{x}-E(\mathbf{x}) \\
\mathbf{y}-E(\mathbf{y})
\end{array}\right]\right)^{T} \mathbf{C}^{-1}\left(\left[\begin{array}{l}
\mathbf{x}-E(\mathbf{x}) \\
\mathbf{y}-E(\mathbf{y})
\end{array}\right]\right)\right]
$$

then the conditional PDF $p(\mathbf{y} \mid \mathbf{x})$ is also Gaussian and

$$
\begin{align*}
E(\mathbf{y} \mid \mathbf{x}) & =E(\mathbf{y})+\mathbf{C}_{y x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \tag{10.24}\\
\mathbf{C}_{y \mid x} & =\mathbf{C}_{y y}-\mathbf{C}_{y x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x y} \tag{10.25}
\end{align*}
$$

Chapter 12 - Linear Bayesian Estimation

Connections

Chapter 12 - Linear Bayesian Estimation

Connections

	X and θ jointly Gaussian	X and θ not jointly Gaussian
LMMSE estimator	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$
Bmse		

Chapter 12 - Linear Bayesian Estimation

Connections

	X and θ jointly Gaussian	X and θ not jointly Gaussian
LMMSE estimator	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$
Bmse	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}$	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}$

Chapter 12 - Linear Bayesian Estimation

Connections

	X and θ jointly Gaussian	X and θ not jointly Gaussian
LMMSE estimator	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$
Bmse	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}$ MMSE estimator	$E(\theta \mid \mathbf{x})=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$ $\mathrm{LMMSE}=\mathrm{MMSE}^{2}$
	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}$	

Chapter 12 - Linear Bayesian Estimation

Connections

	X and θ jointly Gaussian	X and θ not jointly Gaussian
LMMSE estimator	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$
Bmse	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}$	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathrm{C}_{x \theta}$
MMSE estimator	$\begin{gathered} E(\boldsymbol{\theta} \mid \mathbf{x})=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\ \text { LMMSE }=\text { MMSE } \end{gathered}$	$E(\boldsymbol{\theta} \mid \mathbf{x}) \neq E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$
Bmse	$C_{\theta \theta}-\mathrm{C}_{\theta x} \mathrm{C}_{x x}^{-1} \mathrm{C}_{x \theta}$	Better than $C_{\theta \theta}-\mathbf{C}_{\theta x} \mathrm{C}_{x x}^{-1} \mathrm{C}_{x \theta}$

Chapter 12 - Linear Bayesian Estimation

Connections

	X and θ jointly Gaussian	X and θ not jointly Gaussian
LMMSE estimator	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$	$\hat{\theta}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$
Bmse	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta}$	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathrm{C}_{x \theta}$
MMSE estimator	$\begin{gathered} E(\theta \mid \mathbf{x})=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\ \text { LMMSE }=\text { MMSE } \end{gathered}$	$E(\boldsymbol{\theta} \mid \mathbf{x}) \neq E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$
Bmse	$C_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathrm{C}_{x \theta}$	Better than $C_{\theta \theta}-\mathrm{C}_{\theta x} \mathrm{C}_{x x}^{-1} \mathrm{C}_{x \theta}$

Chapter 12 - Linear Bayesian Estimation

Example $12.1 \quad x[n]=A+w[n] \quad n=0,1, \ldots, N-1 \quad A \sim \mathcal{U}\left[-A_{0}, A_{0}\right]$

Bayesian options:

1. MMSE
2. MAP
3. LMMSE

Chapter 12 - Linear Bayesian Estimation

$$
\text { Example } 12.1 \quad x[n]=A+w[n] \quad n=0,1, \ldots, N-1 \quad A \sim \mathcal{U}\left[-A_{0}, A_{0}\right]
$$

Bayesian options:

1. MMSE. Not possible in closed form
2. MAP. Possible: truncated sample mean
3. LMMSE

Chapter 12 - Linear Bayesian Estimation

$$
\text { Example } 12.1 \quad x[n]=A+w[n] \quad n=0,1, \ldots, N-1 \quad A \sim \mathcal{U}\left[-A_{0}, A_{0}\right]
$$

Bayesian options:

1. MMSE. Not possible in closed form
2. MAP. Possible: truncated sample mean
3. LMMSE

$$
\begin{aligned}
& \hat{A}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \quad \text { All means are zero } \\
& \hat{A}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x}
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Example $12.1 \quad x[n]=A+w[n] \quad n=0,1, \ldots, N-1 \quad A \sim \mathcal{U}\left[-A_{0}, A_{0}\right]$

Bayesian options:

1. MMSE. Not possible in closed form
2. MAP. Possible: truncated sample mean
3. LMMSE

$$
\begin{aligned}
& \hat{A}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\
& \\
& \qquad \begin{aligned}
\hat{A}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x} & \\
\mathbf{C}_{x x} & =E\left(\mathbf{x} \mathbf{x}^{T}\right) \\
& =E\left[(A \mathbf{1}+\mathbf{w})(A \mathbf{1}+\mathbf{w})^{T}\right] \\
& =E\left(A^{2}\right) \mathbf{1 1}^{T}+\sigma^{2} \mathbf{I} \\
\mathbf{C}_{\theta x} & =E\left(A \mathbf{x}^{T}\right) \\
& =E\left[A(A 1+\mathbf{w})^{T}\right] \\
& =E\left(A^{2}\right) \mathbf{1}^{T}
\end{aligned}
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Example $12.1 \quad x[n]=A+w[n] \quad n=0,1, \ldots, N-1 \quad A \sim \mathcal{U}\left[-A_{0}, A_{0}\right]$

Bayesian options:

1. MMSE. Not possible in closed form
2. MAP. Possible: truncated sample mean
3. LMMSE

$$
\left.\begin{array}{rl}
\hat{A}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\
& \\
\hat{A}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x} & \\
& \mathbf{C}_{x x} \\
\hat{A}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x} & =E\left(\mathbf{x x}^{T}\right) \\
=\sigma_{A}^{2} \mathbf{1}^{T}\left(\sigma_{A}^{2} \mathbf{1 1}^{T}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{x} & \\
& \left.\left.=E\left(A^{2}\right) \mathbf{1 1} \mathbf{w}\right)(A \mathbf{1}+\mathbf{w})^{T}\right] \\
& \mathbf{C}_{\theta x} \\
& =E\left(A \mathbf{x}^{T}\right) \\
& =E\left[A(A 1+\mathbf{w})^{T}\right] \\
& =E\left(A^{2}\right) \mathbf{1}^{T} \\
& \sigma_{A}^{2}
\end{array}\right) E\left(A^{2}\right) .
$$

Chapter 12 - Linear Bayesian Estimation

Example $12.1 \quad x[n]=A+w[n] \quad n=0,1, \ldots, N-1 \quad A \sim \mathcal{U}\left[-A_{0}, A_{0}\right]$

Bayesian options:

1. MMSE. Not possible in closed form
2. MAP. Possible: truncated sample mean
3. LMMSE. Doable

$$
\begin{aligned}
& \hat{A}=E(\theta)+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\
& \hat{A}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x} \\
& \hat{A}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x} \\
& =\sigma_{A}^{2} \mathbf{1}^{T}\left(\sigma_{A}^{2} \mathbf{1 1} \mathbf{1}^{T}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{x} \\
& =\ldots . . .=\hat{A}=\frac{\frac{A_{0}^{2}}{3}}{\frac{A_{0}^{2}}{3}+\frac{\sigma^{2}}{N}} \bar{x} \\
& \mathbf{C}_{x x}=E\left(\mathbf{x x}^{T}\right) \\
& =E\left[(A \mathbf{1}+\mathbf{w})(A \mathbf{1}+\mathbf{w})^{T}\right] \\
& =E\left(A^{2}\right) \mathbf{1 1}^{T}+\sigma^{2} \mathrm{I} \\
& \mathbf{C}_{\theta x}=E\left(A \mathbf{x}^{T}\right) \\
& =E\left[A(A 1+\mathbf{w})^{T}\right] \\
& =E\left(A^{2}\right) 1^{T} \\
& \sigma_{A}^{2}=E\left(A^{2}\right)
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

$$
\text { Example } 12.1 \quad x[n]=A+w[n] \quad n=0,1, \ldots, N-1 \quad A \sim \mathcal{U}\left[-A_{0}, A_{0}\right]
$$

Observations

1. With no prior, the sample mean is MVU
2. The LMMSE is a tradeoff between the MVU and the sample mean
3. We did not use the fact that A is uniform, only its mean and variance comes in
4. We do not need A and w to be independent, only uncorrelated

$$
\hat{A}=\frac{\frac{A_{0}^{2}}{3}}{\frac{A_{0}^{2}}{3}+\frac{\sigma^{2}}{N}} \bar{x}
$$

5. No integration is needed

Chapter 12 - Linear Bayesian Estimation

Extension to vector parameter

We can work with each parameter individually

$$
\hat{\theta}_{i}=\sum_{n=0}^{N-1} a_{i n} x[n]+a_{i N} \quad \operatorname{Bmse}\left(\hat{\theta}_{i}\right)=E\left[\left(\theta_{i}-\hat{\theta}_{i}\right)^{2}\right] \quad i=1,2, \ldots, p
$$

Chapter 12 - Linear Bayesian Estimation

Extension to vector parameter

We can work with each parameter individually

$$
\hat{\theta}_{i}=\sum_{n=0}^{N-1} a_{i n} x[n]+a_{i N} \quad \operatorname{Bmse}\left(\hat{\theta}_{i}\right)=E\left[\left(\theta_{i}-\hat{\theta}_{i}\right)^{2}\right] \quad i=1,2, \ldots, p
$$

From before, we have that
$\hat{\theta}_{i}=E\left(\theta_{i}\right)+\mathbf{C}_{\theta_{i} x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \quad i=1,2, \ldots, p$
$\operatorname{Bmse}\left(\hat{\theta}_{i}\right)=C_{\theta_{i} \theta_{i}}-\mathbf{C}_{\theta_{i} x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta_{i}} \quad i=1,2, \ldots, p$

Chapter 12 - Linear Bayesian Estimation

Extension to vector parameter

We can work with each parameter individually

$$
\hat{\theta}_{i}=\sum_{n=0}^{N-1} a_{i n} x[n]+a_{i N} \quad \operatorname{Bmse}\left(\hat{\theta}_{i}\right)=E\left[\left(\theta_{i}-\hat{\theta}_{i}\right)^{2}\right] \quad i=1,2, \ldots, p
$$

From before, we have that
$\hat{\theta}_{i}=E\left(\theta_{i}\right)+\mathbf{C}_{\theta_{i} x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))$
$\operatorname{Bmse}\left(\hat{\theta}_{i}\right)=C_{\theta_{i} \theta_{i}}-\mathbf{C}_{\theta_{i} x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta_{i}}$
collect in vector notation

$$
\begin{aligned}
\hat{\boldsymbol{\theta}} & =\left[\begin{array}{c}
E\left(\theta_{1}\right) \\
E\left(\theta_{2}\right) \\
\vdots \\
E\left(\theta_{p}\right)
\end{array}\right]+\left[\begin{array}{c}
\mathbf{C}_{\theta_{1} x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\
\mathbf{C}_{\theta_{2} x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\
\vdots \\
\vdots \\
\mathbf{C}_{\theta_{p} x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))
\end{array}\right] \\
& =\left[\begin{array}{c}
E\left(\theta_{1}\right) \\
E\left(\theta_{2}\right) \\
\vdots \\
E\left(\theta_{p}\right)
\end{array}\right]+\left[\begin{array}{c}
\mathbf{C}_{\theta_{1} x} \\
\mathbf{C}_{\theta_{2} x} \\
\vdots \\
\mathbf{C}_{\theta_{p} x}
\end{array}\right] \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\
& =E(\boldsymbol{\theta})+\mathbf{C}_{\theta_{x}} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Extension to vector parameter

We can work with each parameter individually

$$
\hat{\theta}_{i}=\sum_{n=0}^{N-1} a_{i n} x[n]+a_{i N} \quad \operatorname{Bmse}\left(\hat{\theta}_{i}\right)=E\left[\left(\theta_{i}-\hat{\theta}_{i}\right)^{2}\right] \quad i=1,2, \ldots, p
$$

From before, we have that

$$
\hat{\theta}_{i}=E\left(\theta_{i}\right)+\mathbf{C}_{\theta_{i} x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))
$$

$$
\operatorname{Bmse}\left(\hat{\theta}_{i}\right)=C_{\theta_{i} \theta_{i}}-\mathbf{C}_{\theta_{i} x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta_{i}}
$$

BMSE

$$
\begin{aligned}
\mathbf{M}_{\hat{\theta}} & =E\left[(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}})(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}})^{T}\right] \\
& =\mathbf{C}_{\theta \theta}-\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{C}_{x \theta} \\
\operatorname{Bmse}\left(\hat{\theta}_{i}\right) & =\left[\mathbf{M}_{\hat{\theta}}\right]_{i i}
\end{aligned}
$$

$$
\hat{\boldsymbol{\theta}}=\left[\begin{array}{c}
E\left(\theta_{1}\right) \\
E\left(\theta_{2}\right) \\
\vdots \\
E\left(\theta_{p}\right)
\end{array}\right]+\left[\begin{array}{c}
\mathbf{C}_{\theta_{1} x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x})) \\
\left.\mathbf{C}_{\theta_{2} x} \mathbf{C}_{x x}^{-1} \mathbf{x}-E(\mathbf{x})\right) \\
\vdots \\
\mathbf{C}_{\theta_{p} x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
E\left(\theta_{1}\right) \\
E\left(\theta_{2}\right) \\
\vdots
\end{array}\right]+\left[\begin{array}{c}
\mathbf{C}_{\theta_{1} x} \\
\mathbf{C}_{\theta_{2} x} \\
\vdots
\end{array}\right] \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))
$$

$$
=E(\boldsymbol{\theta})+\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1}(\mathbf{x}-E(\mathbf{x}))
$$

Chapter 12 - Linear Bayesian Estimation

Three properties

1. Invariance holds for affine transformations

$$
\alpha=\mathbf{A} \boldsymbol{\theta}+\mathbf{b} \longrightarrow \hat{\alpha}=\mathbf{A} \hat{\boldsymbol{\theta}}+\mathbf{b}
$$

Chapter 12 - Linear Bayesian Estimation

Three properties

1. Invariance holds for affine transformations

$$
\alpha=\mathbf{A} \boldsymbol{\theta}+\mathbf{b} \longrightarrow \hat{\alpha}=\mathbf{A} \hat{\boldsymbol{\theta}}+\mathbf{b}
$$

2. LMMSE of a sum is a sum of the LMMSE

$$
\alpha=\theta_{1}+\theta_{2} \quad \longrightarrow \hat{\alpha}=\hat{\theta}_{1}+\hat{\theta}_{2}
$$

Chapter 12 - Linear Bayesian Estimation

Three properties

1. Invariance holds for affine transformations

$$
\alpha=\mathbf{A} \boldsymbol{\theta}+\mathbf{b} \longrightarrow \hat{\alpha}=\mathbf{A} \hat{\boldsymbol{\theta}}+\mathbf{b}
$$

2. LMMSE of a sum is a sum of the LMMSE

$$
\alpha=\theta_{1}+\theta_{2} \quad \longrightarrow \hat{\alpha}=\hat{\theta}_{1}+\hat{\theta}_{2}
$$

3. Number of observations can be less than parameters to estimate a significant difference from linear classical estimation

Chapter 12 - Linear Bayesian Estimation

$$
\text { With } \mathbf{x}=\mathbf{H} \boldsymbol{\theta}+\mathbf{w} \text { we have } \begin{aligned}
E(\mathbf{x}) & =\mathbf{H} E(\boldsymbol{\theta}) \\
\mathbf{C}_{x x} & =\mathbf{H C}_{\theta \theta} \mathbf{H}^{T}+\mathbf{C}_{w} \\
\mathbf{C}_{\theta x} & =\mathbf{C}_{\theta \theta} \mathbf{H}^{T} .
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Theorem 12.1 (Bayesian Gauss-Markov Theorem) If the data are described by the Bayesian linear model form

$$
\begin{equation*}
\mathbf{x}=\mathbf{H} \theta+\mathbf{w} \tag{12.25}
\end{equation*}
$$

where \mathbf{x} is an $N \times 1$ data vector, \mathbf{H} is a known $N \times p$ observation matrix, $\boldsymbol{\theta}$ is a $p \times 1$ random vector of parameters whose realization is to be estimated and has mean $E(\boldsymbol{\theta})$ and covariance matrix $\mathbf{C}_{\theta \theta}$, and \mathbf{w} is an $N \times 1$ random vector with zero mean and covariance matrix \mathbf{C}_{w} and is uncorrelated with $\boldsymbol{\theta}$ (the joint PDF $p(\mathbf{w}, \boldsymbol{\theta})$ is otherwise arbitrary), then the LMMSE estimator of $\boldsymbol{\theta}$ is

$$
\begin{align*}
\hat{\boldsymbol{\theta}} & =E(\boldsymbol{\theta})+\mathbf{C}_{\theta \theta} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{C}_{\theta \theta} \mathbf{H}^{T}+\mathbf{C}_{w}\right)^{-1}(\mathbf{x}-\mathbf{H} E(\boldsymbol{\theta})) \tag{12.26}\\
& =E(\boldsymbol{\theta})+\left(\mathbf{C}_{\theta \theta}^{-1}+\mathbf{H}^{T} \mathbf{C}_{w}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{C}_{w}^{-1}(\mathbf{x}-\mathbf{H} E(\boldsymbol{\theta})) . \tag{12.27}
\end{align*}
$$

The performance of the estimator is measured by the error $\boldsymbol{\epsilon}=\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}$ whose mean is zero and whose covariance matrix is

$$
\begin{align*}
\mathbf{C}_{\epsilon} & =E_{x, \theta}\left(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T}\right) \\
& =\mathbf{C}_{\theta \theta}-\mathbf{C}_{\theta \theta} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{C}_{\theta \theta} \mathbf{H}^{T}+\mathbf{C}_{w}\right)^{-1} \mathbf{H} \mathbf{C}_{\theta \theta} \tag{12.28}\\
& =\left(\mathbf{C}_{\theta \theta}^{-1}+\mathbf{H}^{T} \mathbf{C}_{w}^{-1} \mathbf{H}\right)^{-1} \tag{12.29}
\end{align*}
$$

The error covariance matrix is also the minimum MSE matrix $\mathbf{M}_{\hat{\theta}}$ whose diagonal elements yield the minimum Bayesian MSE

$$
\begin{align*}
{\left[\mathbf{M}_{\hat{\theta}}\right]_{i i} } & =\left[\mathbf{C}_{\epsilon}\right]_{i i} \\
& =\operatorname{Bmse}\left(\hat{\theta}_{i}\right) . \tag{12.30}
\end{align*}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Data: $\mathrm{x}[0], \mathrm{x}[1], \mathrm{x}[2], \ldots$ WSS with zero mean
Covariance matrix = ? ?

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Data: $\mathrm{x}[0], \mathrm{x}[1], \mathrm{x}[2], \ldots$ WSS with zero mean
Covariance matrix

$$
\begin{aligned}
\mathbf{C}_{x x} & =\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[N-1] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[N-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[N-1] & r_{x x}[N-2] & \ldots & r_{x x}[0]
\end{array}\right] \\
& =\mathbf{R}_{x x} \\
& \text { Autocorrelation matrix }
\end{aligned}
$$

(Toeplitz structure)

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Data: $\mathrm{x}[0], \mathrm{x}[1], \mathrm{x}[2], \ldots$ WSS with zero mean
Covariance matrix

$$
\begin{aligned}
\mathbf{C}_{x x} & =\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[N-1] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[N-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[N-1] & r_{x x}[N-2] & \ldots & r_{x x}[0]
\end{array}\right] \\
& =\mathbf{R}_{x x}
\end{aligned}
$$

Parameter to be estimated: $s[n]$, zero mean
$x[m]=s[m]+w[n]$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Four cases

Filtering
Find $\mathrm{s}[\mathrm{n}]$ given $\mathrm{x}[0], . ., \mathrm{x}[\mathrm{n}]$

(a) Filtering

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Four cases

Smoothing

Find $s[n]$ given $x[0], \ldots, x[N]$

(b) Smoothing

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Four cases

Prediction

Find $s[n-1+L]$ given $x[0], \ldots, x[n-1]$

(c) Prediction

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Four cases

Interpolation

Find $x[n]$ given $x[0], \ldots, x[n-1], x[n+1], \ldots$

(d) Interpolation

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Filtering problem

Signal and noise are uncorrelated

$$
\mathbf{C}_{x x}=\mathbf{R}_{s s}+\mathbf{R}_{w w}
$$

Since the means are zero, we know that

$$
\hat{\boldsymbol{\theta}}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x}
$$

(a) Filtering

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Filtering problem
Signal and noise are uncorrelated

$$
\mathbf{C}_{x x}=\mathbf{R}_{s s}+\mathbf{R}_{w w}
$$

Since the means are zero, we know that

$$
\hat{\boldsymbol{\theta}}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x}
$$

We have

$$
\mathbf{C}_{\theta x}=E(s[n]\lceil x[0] \quad x[1] \quad \ldots x[n]])
$$

(a) Filtering

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Filtering problem
Signal and noise are uncorrelated

$$
\mathbf{C}_{x x}=\mathbf{R}_{s s}+\mathbf{R}_{w w}
$$

Since the means are zero, we know that

$$
\hat{\boldsymbol{\theta}}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x}
$$

We have

$$
\begin{aligned}
\mathbf{C}_{\theta x} & =E\left(s[n]\left[\begin{array}{llll}
x[0] & x[1] & \ldots & x[n]]) \\
& =E\left(s [n] \left[\begin{array}{llll}
s[0] & s[1] & \ldots & s[n]])
\end{array}\right.\right.
\end{array}\right)=\left[\begin{array}{ll}
&
\end{array}\right)\right.
\end{aligned}
$$

(a) Filtering

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Filtering problem
Signal and noise are uncorrelated

$$
\mathbf{C}_{x x}=\mathbf{R}_{s s}+\mathbf{R}_{w w}
$$

Since the means are zero, we know that

$$
\hat{\boldsymbol{\theta}}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x}
$$

We have

$$
\begin{aligned}
\mathbf{C}_{\theta x} & =E\left(s [n] \left[\begin{array}{cccc}
x[0] & x[1] & \ldots & x[n]]) \\
& =E\left(s [n] \left[\begin{array}{llll}
s[0] & s[1] & \ldots & s[n]]) \\
& =\left[r_{s s}[n] r_{s s}[n-1] \ldots r_{s s}[0]\right]=\mathbf{r}_{s s}^{\prime}
\end{array}\right.\right.
\end{array} . \begin{array}{l}
\prime^{T}
\end{array}\right.\right. \\
&
\end{aligned}
$$

(a) Filtering

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Filtering problem
Signal and noise are uncorrelated

$$
\mathbf{C}_{x x}=\mathbf{R}_{s s}+\mathbf{R}_{w w}
$$

Since the means are zero, we know that

$$
\hat{\boldsymbol{\theta}}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x}
$$

We have

$$
\begin{aligned}
\mathbf{C}_{\theta x} & =E\left(s[n]\left[\begin{array}{llll}
x[0] & x[1] & \ldots & x[n]
\end{array}\right]\right) \\
& =E\left(s[n]\left[\begin{array}{llll}
s[0] & s[1] & \ldots & s[n]
\end{array}\right]\right) \\
& =\left\{r_{s s}[n] r_{s s}[n-1] \ldots r_{s s}[0]\right]=\mathbf{r}_{s s}^{\tau_{s}}
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Filtering problem
Signal and noise are uncorrelated

$$
\mathbf{C}_{x x}=\mathbf{R}_{s s}+\mathbf{R}_{w w}
$$

Since the means are zero, we know that

$$
\hat{\boldsymbol{\theta}}=\mathbf{C}_{\theta x} \mathbf{C}_{x x}^{-1} \mathbf{x}
$$

We have

$$
\begin{aligned}
\mathbf{C}_{\theta x} & =E\left(s [n] \left[\begin{array}{llll}
x[0] & x[1] & \ldots & x[n]]) \\
& =E\left(s[n]\left[\begin{array}{lll}
s[0] & s[1] & \ldots \\
s[n]]
\end{array}\right)\right. \\
& =\left[r_{s s}[n] r_{s s}[n-1] \ldots r_{s s}[0]\right]=\mathbf{r}_{s s}^{\prime}[
\end{array}\right.\right.
\end{aligned}
$$

So,

$$
\hat{s}[n]=\mathbf{r}_{s s}^{\prime}\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right)^{-1} \mathbf{x}
$$

With

$$
\mathbf{a}=\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right)^{-1} \mathbf{r}_{s s}^{\prime}
$$

We get

$$
\hat{s}[n]=\mathbf{a}^{T} \mathbf{x}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Why is it a filtering?

Find $s[n]$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Why is it a filtering?
Find $\mathrm{s}[\mathrm{n}]$
We do this as a weighted sum
$s[n]=a_{0} x[n]+a_{1} x[n-1]+a_{2} x[n-2]$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Why is it a filtering?
Find $\mathrm{s}[\mathrm{n}]$
We do this as a weighted sum
$s[n]=a_{0} x[n]+a_{1} x[n-1]+a_{2} x[n-2]$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Why is it a filtering?
Find $\mathrm{s}[\mathrm{n}]$
We do this as a weighted sum
$s[n]=a_{0} x[n]+a_{1} x[n-1]+a_{2} x[n-2]$

However, at the next time, the weights $\left\{a_{k}\right\}$ are not the same (edge effect)

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Why is it a filtering?

To estimate $s[n]$, we filter the
recent observations with a filter
that is dependent on n
The filter is time-variant
$h^{(n)}[k]=a_{n-k} \quad k=0,1, \ldots, n$
a is computed for a given n (not shown explicitly)

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Why is it a filtering?
$x[n-3]$

To estimate $s[\mathrm{n}]$, we filter the
recent observations with a filter
that is dependent on n
The filter is time-variant
$h^{(n)}[k]=a_{n-k} \quad k=0,1, \ldots, n$

We get,

$$
\hat{s}[n]=\sum_{k=0}^{n} a_{k} x[k]
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Why is it a filtering?

To estimate $s[\mathrm{n}]$, we filter the
recent observations with a filter
that is dependent on n
The filter is time-variant
$h^{(n)}[k]=a_{n-k} \quad k=0,1, \ldots, n$

We get,

$$
\begin{aligned}
\hat{s}[n] & =\sum_{k=0}^{n} a_{k} x[k] \\
& =\sum_{k=0}^{n} h^{(n)}[n-k] x[k]
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Why is it a filtering?

To estimate $\mathrm{s}[\mathrm{n}]$, we filter the
recent observations with a filter
that is dependent on n
The filter is time-variant
$h^{(n)}[k]=a_{n-k} \quad k=0,1, \ldots, n$

We get,

$$
\begin{aligned}
\hat{s}[n] & =\sum_{k=0}^{n} a_{k} x[k] \\
& =\sum_{k=0}^{n} h^{(n)}[n-k] x[k] \\
\hat{s}[n] & =\sum_{k=0}^{n} h^{(n)}[k] x[n-k]
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Observe

$$
\begin{aligned}
\mathbf{h}=\left[h^{(n)}[0] h^{(n)}[1] \ldots h^{(n)}[n]\right]^{T} \quad & \text { is a but flipped upside-down } \\
\mathbf{a} & =\left[a_{0} a_{1} \ldots a_{n}\right]^{T}
\end{aligned}
$$

To estimate $\mathrm{s}[\mathrm{n}]$, we filter the
recent observations with a filter
that is dependent on n
The filter is time-variant
$h^{(n)}[k]=a_{n-k} \quad k=0,1, \ldots, n$

We get,

$$
\begin{aligned}
\hat{s}[n] & =\sum_{k=0}^{n} a_{k} x[k] \\
& =\sum_{k=0}^{n} h^{(n)}[n-k] x[k] \\
\hat{s}[n] & =\sum_{k=0}^{n} h^{(n)}[k] x[n-k]
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Observe

$$
\begin{aligned}
& \mathbf{h}=\left[h^{(n)}[0] h^{(n)}[1] \ldots h^{(n)}[n]\right]^{T} \quad \text { is a but flipped upside-down } \\
& \mathbf{a}=\left[a_{0} a_{1} \ldots a_{n}\right]^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Recall } \\
& \qquad \begin{array}{c}
\mathbf{a}=\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right)^{-1} \mathbf{r}_{s s}^{\prime} \\
\mathbf{r}_{s s}^{\prime}=
\end{array}\left[_{s s}[n] r_{s s}[n-1] \ldots r_{s s}[0]\right]
\end{aligned}
$$

We get,

$$
\begin{aligned}
\hat{s}[n] & =\sum_{k=0}^{n} a_{k} x[k] \\
& =\sum_{k=0}^{n} h^{(n)}[n-k] x[k] \\
\hat{s}[n] & =\sum_{k=0}^{n} h^{(n)}[k] x[n-k]
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Observe

$$
\begin{aligned}
\mathbf{h}=\left[h^{(n)}[0] h^{(n)}[1] \ldots h^{(n)}[n]\right]^{T} \quad \text { is a but flipped upside-down } \\
\mathbf{a}=\left[a_{0} a_{1} \ldots a_{n}\right]^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Recall } \\
& \qquad \begin{array}{c}
\mathbf{a}=\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right)^{-1} \mathbf{r}_{s s}^{\prime} \\
\mathbf{r}_{s s}^{\prime}=\left[r_{s s}[n] r_{s s}[n-1] \ldots r_{s s}[0]\right] \\
\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right) \mathbf{a}=\mathbf{r}_{s s}^{\prime}
\end{array}
\end{aligned}
$$

We get,

$$
\begin{aligned}
\hat{s}[n] & =\sum_{k=0}^{n} a_{k} x[k] \\
& =\sum_{k=0}^{n} h^{(n)}[n-k] x[k] \\
\hat{s}[n] & =\sum_{k=0}^{n} h^{(n)}[k] x[n-k]
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Observe

$$
\begin{gathered}
\mathbf{h}=\left[h^{(n)}[0] h^{(n)}[1] \ldots h^{(n)}[n]\right]^{T} \quad \text { is a but flipped upside-down } \\
\mathbf{a}=\left[a_{0} a_{1} \ldots a_{n}\right]^{T}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Recall } \\
& \qquad \begin{array}{l}
\mathbf{a}=\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right)^{-1} \mathbf{r}_{s s}^{\prime} \\
\mathbf{r}_{s s}^{\prime}=\left\{r_{s s}[n] r_{s s}[n-1] \ldots r_{s s}[0]\right] \\
\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right) \mathbf{a}=\mathbf{r}_{s s}^{\prime} \\
\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right) \mathbf{h}=\mathbf{r}_{s s} \\
\mathbf{r}_{s s}=\left[r_{s s}[0] r_{s s}[1] \ldots r_{s s}[n]\right]^{T}
\end{array}
\end{aligned}
$$

We get,

$$
\begin{aligned}
\hat{s}[n] & =\sum_{k=0}^{n} a_{k} x[k] \\
& =\sum_{k=0}^{n} h^{(n)}[n-k] x[k] \\
\hat{s}[n] & =\sum_{k=0}^{n} h^{(n)}[k] x[n-k]
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

$$
\begin{gathered}
\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right) \mathbf{h}=\mathbf{r}_{s s} \\
\mathbf{r}_{s s}=\left[r_{s s}[0] r_{s s}[1] \ldots r_{s s}[n]\right]^{T}
\end{gathered}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Wiener-Hopf equations

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[n] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[n-1] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[n] & r_{x x}[n-1] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h^{(n)}[0] \\
h^{(n)}[1] \\
\vdots \\
h^{(n)}[n]
\end{array}\right]=\left[\begin{array}{c}
r_{s s}[0] \\
r_{s s}[1] \\
\vdots \\
r_{s s}[n]
\end{array}\right]
$$

$$
\begin{gathered}
\left(\mathbf{R}_{s s}+\mathbf{R}_{w w}\right) \mathbf{h}=\mathbf{r}_{s s} \\
\mathbf{r}_{s s}=\left[r_{s s}[0] r_{s s}[1] \ldots r_{s s}[n]\right]^{T}
\end{gathered}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Wiener-Hopf equations

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[n] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[n-1] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[n] & r_{x x}[n-1] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h^{(n)}[0] \\
h^{(n)}[1] \\
\vdots \\
h^{(n)}[n]
\end{array}\right]=\left[\begin{array}{c}
r_{s s}[0] \\
r_{s s}[1] \\
\vdots \\
r_{s s}[n]
\end{array}\right]
$$

These equations can be solved recursively by the Levinson algorithm
Observe: The matrix is Toeplitz, but cannot be approximated as circulant as \mathbf{n} grows. Therefore, Szegö theory does not apply.

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Wiener-Hopf equations

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[n] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[n-1] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[n] & r_{x x}[n-1] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h^{(n)}[0] \\
h^{(n)}[1] \\
\vdots \\
h^{(n)}[n]
\end{array}\right]=\left[\begin{array}{c}
r_{s s}[0] \\
r_{s s}[1] \\
\vdots \\
r_{s s}[n]
\end{array}\right]
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

Wiener-Hopf equations

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[n] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[n-1] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[n] & r_{x x}[n-1] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h^{(n)}[0] \\
h^{(n)}[1] \\
\vdots \\
h^{(n)}[n]
\end{array}\right]=\left[\begin{array}{c}
r_{s s}[0] \\
r_{s s}[1] \\
\vdots \\
r_{s s}[n]
\end{array}\right]
$$

As n grows, the filter converges to a stationary solution

$$
\sum_{k=0}^{\infty} h[k] r_{x x}[l-k]=r_{s s}[l] \quad l=0,1, \ldots
$$

Chapter 12 - Linear Bayesian Estimation

Wiener filtering

To find $h[n]$, we can apply spectral factorization (= same method as is used to find a minimum phase version of a filter)

$$
\sum_{k=0}^{\infty} h[k] r_{x x}[l-k]=r_{s s}[l] \quad l=0,1, \ldots .
$$

Chapter 12 - Linear Bayesian Estimation

Wiener smoothing

Now consider asymptotic Wiener smoothing

We can still express the estimation of $s[n]$ as a filtering of $\{x[k]\}$

Chapter 12 - Linear Bayesian Estimation

Wiener smoothing

Now consider asymptotic Wiener smoothing

We can still express the estimation of $s[n]$ as a filtering of $\{x[k]\}$ The filter is not causal

$$
\hat{s}[n]=\sum_{v=-\infty}^{\infty} h[k] x[n-k]
$$

Chapter 12 - Linear Bayesian Estimation

Wiener smoothing

Filtering

$$
\hat{s}[n]=\sum_{k=0}^{\infty} h[k] x[n-k]
$$

$\sum_{k=0}^{\infty} h[k] r_{x x}[l-k]=r_{s s}[l] \quad l=0,1, \ldots$.

Smoothing

$$
\hat{s}[n]=\sum_{k i=-\infty}^{\infty} h[k] x[n-k]
$$

???????

Chapter 12 - Linear Bayesian Estimation

Wiener smoothing

Filtering

$$
\hat{s}[n]=\sum_{k=0}^{\infty} h[k] x[n-k]
$$

$$
\downarrow
$$

$$
\sum_{k=0}^{\infty} h[k] r_{x x}[l-k]=r_{s s}[l] \quad l=0,1, \ldots .
$$

$$
\sum_{k=-\infty}^{\infty} h[k] r_{x x}[l-k]=r_{s s}\left[\frac{k}{2} \quad-\infty<l<\infty\right.
$$

(12.61): Typo in book /

Chapter 12 - Linear Bayesian Estimation

Wiener smoothing

$$
\sum_{k=-\infty}^{\infty} h[k] r_{x x}[l-k]=r_{s s}[k] \quad-\infty<l<\infty
$$

No edge effect in the smoothing setup!

Can be solved by approximating R_{xx} as a circulant matrix (Szegö theory)

Chapter 12 - Linear Bayesian Estimation

Wiener smoothing

$$
\sum_{k=-\infty}^{\infty} h[k] r_{x x}[l-k]=r_{s s}[k] \quad-\infty<l<\infty
$$

No edge effect in the smoothing setup!
Can be solved by approximating R_{xx} as a circulant matrix (Szegö theory)

$$
\begin{aligned}
h[n] \star r_{x x}[n]=r_{s s}[n] \quad H(f) & =\frac{P_{s s}(f)}{P_{x x}(f)} \\
& =\frac{P_{s s}(f)}{P_{s s}(f)+P_{w w}(f)} .
\end{aligned}
$$

Chapter 12 - Linear Bayesian Estimation

Wiener prediction

Filtering equations

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[n] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[n-1] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[n] & r_{x x}[n-1] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h^{(n)}[0] \\
h^{(n)}[1] \\
\vdots \\
h^{(n)}[n]
\end{array}\right]=\left[\begin{array}{c}
r_{s s}[0] \\
r_{s s}[1] \\
\vdots \\
r_{s s}[n]
\end{array}\right]
$$

Chapter 12 - Linear Bayesian Estimation

Wiener prediction

Filtering equations....Filtering"predicts" $s[n]$ given $x[n]$

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[n] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[n-1] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[n] & r_{x x}[n-1] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h^{(n)}[0] \\
h^{(n)}[1] \\
\vdots \\
h^{(n)}[n]
\end{array}\right]=\left[\begin{array}{c}
r_{s s}[0] \\
r_{s s}[1] \\
\vdots \\
r_{s s}[n]
\end{array}\right]
$$

Chapter 12 - Linear Bayesian Estimation

Wiener prediction

Filtering equations....Filtering"predicts" $\mathrm{s}[\mathrm{n}]$ given $\mathrm{x}[\mathrm{n}]$

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[n] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[n-1] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[n] & r_{x x}[n-1] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h^{(n)}[0] \\
h^{(n)}[1] \\
\vdots \\
h^{(n)}[n]
\end{array}\right]=\left[\begin{array}{c}
r_{s s}[0] \\
r_{s s}[1] \\
\vdots \\
r_{s s}[n]
\end{array}\right]
$$

In prediction $\mathrm{x}[\mathrm{n}]$ is not available, therefore there is no $\mathrm{h}[0]$ coefficient.

Chapter 12 - Linear Bayesian Estimation

Wiener prediction

Filtering equations....Filtering"predicts" $\mathrm{s}[\mathrm{n}]$ given $\mathrm{x}[\mathrm{n}]$

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[N-1] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[N-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[N-1] & r_{x x}[N-2] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h[1] \\
h[2] \\
\vdots \\
h[N]
\end{array}\right]
$$

In prediction $\mathrm{x}[\mathrm{n}]$ is not available, therefore there is no $\mathrm{h}[0]$ coefficient.

Chapter 12 - Linear Bayesian Estimation

Wiener prediction

Filtering equations....Filtering"predicts" $\mathrm{s}[\mathrm{n}]$ given $\mathrm{x}[\mathrm{n}]$

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[N-1] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[N-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[N-1] & r_{x x}[N-2] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h[1] \\
h[2] \\
\vdots \\
h[N]
\end{array}\right]=\left[\begin{array}{c}
r_{x x}[l] \\
r_{x x}[l+1] \\
\vdots \\
r_{x x}[N-1+l]
\end{array}\right]
$$

In prediction $\mathrm{x}[\mathrm{n}]$ is not available, therefore there is no $\mathrm{h}[0]$ coefficient.
We are also predicting I steps into the future

Chapter 12 - Linear Bayesian Estimation

Wiener prediction

Filtering equations....Filtering"predicts" s[n] given $x[n]$

$$
\left[\begin{array}{cccc}
r_{x x}[0] & r_{x x}[1] & \ldots & r_{x x}[N-1] \\
r_{x x}[1] & r_{x x}[0] & \ldots & r_{x x}[N-2] \\
\vdots & \vdots & \ddots & \vdots \\
r_{x x}[N-1] & r_{x x}[N-2] & \ldots & r_{x x}[0]
\end{array}\right]\left[\begin{array}{c}
h[1] \\
h[2] \\
\vdots \\
h[N]
\end{array}\right]=\left[\begin{array}{c}
r_{x x}[l] \\
r_{x x}[l+1] \\
\vdots \\
r_{x x}[N-1+l]
\end{array}\right]
$$

In prediction $\mathrm{x}[\mathrm{n}]$ is not available, therefore there is no $\mathrm{h}[0]$ coefficient.
We are also predicting I steps into the future

Wiener-Hopf prediction equations. For I=1 we obtain the Yule-Walker equations Solved by Levinson recursion or spectral factorization (not Szegö Theory)

