
Project 4: Learning about DES

Cryptology 2005

Introduction

In this project we will learn about the construction and cryptanalysis of block ciphers. In par-
ticular, we will learn about the Data Encryption Standard, or DES for short, which is the most
well-known block cipher. It is used in many cryptographic applications today.

The project is divided into two parts, one describing the DES algorithm, and one describing
“linear cryptanalysis” which is one of the most famous general attack on block ciphers. You will
need to do 6 exercises: 4 home (manually) and 2 laboratory (with a computer) exercises.

1 The DES Algorithm

1.1 Background

DES was developed at IBM, as a modification of an earlier cryptosystem known as LUCIFER.
DES was first published in the Federal Register of March 17, 1975. After a considerable amount
of public discussion, DES was adopted as a standard for “unclassified” applications on January
15, 1977. DES has been reviewed by the National Bureau of Standards every five years since its
adoption.

1.2 Description of the DES Algorithm

A complete description of DES is given in the Federal Information Processing Standards Publica-
tion 46, dated January 15, 1977. DES encrypts a plaintext bitstring x of length 64, using a key
K which is a bitstring of length 56, obtaining a ciphertext bitstring c which is again a bitstring of
length 64. The algorithm can first be described in three steps.

1. From the plaintext x, a bitstring x0 is constructed by applying a fixed initial permutation,
called IP. The bitstring x0 = IP(x) is divided in two parts, x0 = L0R0, where L0 is the first
32 (leftmost) bits and R0 is the 32 last (rightmost) bits.

2. A certain function with start value x0 is then iterated 16 times. If xi = LiRi, we compute
LiRi according to the following iteration:

Li = Ri−1,

Ri = Li−1 ⊕ f(Ri−1, Ki),

where ⊕ denotes bitwise addition of the two bitstrings. The function f will be described
later, and K1, K2, . . . , K16 are bitstrings of length 48, each a selection of bits from the key
K. We describe later how these bits are selected. One such iteration is called a round, see
Figure 2.

3. Finally, the inverse permutation IP−1 is applied to the reversed bitstring R16L16. The
result is the ciphertext c = IP−1(R16L16). Note the reversed order of L16 and R16.

Already now we can identify one of the essential features of DES, namely how the decryption
algorithm will look like.

1

Figure 1: The structure of DES.

Home-Exercise 1 Verify that decryption is done by using the same algorithm, starting with c as
input, but using the keys Ki in reverse order, i.e., in the order K16, K15, . . . , K1.

�

We now continue to describe the function f . If we write f(Rx, Kx), then the first argument Rx

is a bitstring of length 32, and the second argument Kx is a bitstring of length 48. The function
f(Rx, Kx) then returns a bitstring of length 32, which are obtained by executing the following
steps:

2

Figure 2: One round in DES.

1. The first argument Rx is expanded to a bitstring of length 48 according to a fixed expansion
function E. E(Rx) consists of 48 bits from Rx, some bits appearing twice.

2. Compute B = E(Rx) ⊕ Kx and write the result as a concatenation of eight 6-bit strings
B = B1B2B3B4B5B6B7B8.

3. The next step uses eight S-boxes S1, S2, . . . , S8. Each Si is a fixed 4 × 16 array whose
entries are from the integers 0 − 15. Given a 6-bit string Bj = b1b2b3b4b5b6, we compute
Sj(Bj) as follows. The two bits b1b6 determine the binary representation of a row r of Sj ,
0 ≤ r ≤ 3, and the four bits b2b3b4b5 determine the binary representation of a column c of
Sj, 0 ≤ c ≤ 15. Then Sj(BJ) is defined to be the entry in row r and column c, written
in a binary representation as a 4-bit string. In this fashion, we compute Cj = Sj(Bj) for
1 ≤ j ≤ 8.

4. The bitstring C = C1C2C3C4C5C6C7C8 obtained from the previous step is permuted accord-
ing to a fixed permutation P . The resulting 32-bit string P (C) is defined to be f(Rx, Kx).

An overview of the f function is shown in Figure 3. The strength of the DES cipher lies entirely
in the S-boxes.

Home-Exercise 2 Find the value of f(Rx, Kx) for input values Rx =115599DD and Kx =12345678ABCD.

�

We now give the different predefined functions of DES. The initial permutation is as follows:

IP =

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

The notation means that the 58th bit of x is the first bit in IP(x), the 50th bit of x is the second
bit in IP(x), and so on. The inverse permutation IP−1 is then the following:

IP−1 =

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

3

Figure 3: The f function in DES.

The expansion function E is specified by the following table:

E =

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

The eight S-boxes are now as follows:

S1 =

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 =

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 =

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

4

S4 =

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 =

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 =

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 =

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 =

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Finally, the permutation P is described by

P =

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

We now need to describe how the key K is used in the key schedule to give the partial keys
K1, K2, . . . , K16. The key K is a 64 bit string which consists of 56 actual key bits and 8 parity
check bits. The parity check bits are the bits in positions 8, 16, 24, . . . , 64. The parity check bits
are defined in such a way that each byte contains an odd number of 1’s. The parity check bits are
ignored in the key schedule.

As mentioned before, each round uses as the key Ki 48 bits, that are selected bits from K.
The entries in the array refer to the bits of K that are used in the various rounds.

K1 =

10 51 34 60 49 17 33 57 2 9 19 42
3 35 26 25 44 58 59 1 36 27 18 41
22 28 39 54 37 4 47 30 5 53 23 29
61 21 38 63 15 20 45 14 13 62 55 31

K2 =

2 43 26 52 41 9 25 49 59 1 11 34
60 27 18 17 36 50 51 58 57 19 10 33
14 20 31 46 29 63 39 22 28 45 15 21
53 13 30 55 7 12 37 6 5 54 47 23

K3 =

51 27 10 36 25 58 9 33 43 50 60 18
44 11 2 1 49 34 35 42 41 3 59 17
61 4 15 30 13 47 23 6 12 29 62 5
37 28 14 39 54 63 21 53 20 38 31 7

K4 =

35 11 59 49 9 42 58 17 27 34 44 2
57 60 51 50 33 18 19 26 25 52 43 1
45 55 62 14 28 31 7 53 63 13 46 20
21 12 61 23 38 47 5 37 4 22 15 54

5

K5 =

19 60 43 33 58 26 42 1 11 18 57 51
41 44 35 34 17 2 3 10 9 36 27 50
29 39 46 61 12 15 54 37 47 28 30 4
5 63 45 7 22 31 20 21 55 6 62 38

K6 =

3 44 27 17 42 10 26 50 60 2 41 35
25 57 19 18 1 51 52 59 58 49 11 34
13 23 30 45 63 62 38 21 31 12 14 55
20 47 29 54 6 15 4 5 39 53 46 22

K7 =

52 57 11 1 26 59 10 34 44 51 25 19
9 41 3 2 50 35 36 43 42 33 60 18
28 7 14 29 47 46 22 5 15 63 61 39
4 31 13 38 53 62 55 20 23 37 30 6

K8 =

36 41 60 50 10 43 59 18 57 35 9 3
58 25 52 51 34 19 49 27 26 17 44 2
12 54 61 13 31 30 6 20 62 47 45 23
55 15 28 22 37 46 39 4 7 21 14 53

K9 =

57 33 52 42 2 35 51 10 49 27 1 60
50 17 44 43 26 11 41 19 18 9 36 59
4 46 53 5 23 22 61 12 54 39 37 15
47 7 20 14 29 38 31 63 62 13 6 45

K10 =

41 17 36 26 51 19 35 59 33 11 50 44
34 1 57 27 10 60 25 3 2 58 49 43
55 30 37 20 7 6 45 63 38 23 21 62
31 54 4 61 13 22 15 47 46 28 53 29

K11 =

25 1 49 10 35 3 19 43 17 60 34 57
18 50 41 11 59 44 9 52 51 42 33 27
39 14 21 4 54 53 29 47 22 7 5 46
15 38 55 45 28 6 62 31 30 12 37 13

K12 =

9 50 33 59 19 52 3 27 1 44 18 41
2 34 25 60 43 57 58 36 35 26 17 11
23 61 5 55 38 37 13 31 6 54 20 30
62 22 39 29 12 53 46 15 14 63 21 28

K13 =

58 34 17 43 3 36 52 11 50 57 2 25
51 18 9 44 27 41 42 49 19 10 1 60
7 45 20 39 22 21 28 15 53 38 4 14
46 6 23 13 63 37 30 62 61 47 5 12

K14 =

42 18 1 27 52 49 36 60 34 41 51 9
35 2 58 57 11 25 26 33 3 59 50 44
54 29 4 23 6 5 12 62 37 22 55 61
30 53 7 28 47 21 14 46 45 31 20 63

K15 =

26 2 50 11 36 33 49 44 18 25 35 58
19 51 42 41 60 9 10 17 52 43 34 57
38 13 55 7 53 20 63 46 21 6 39 45
14 37 54 12 31 5 61 30 29 15 4 47

K16 =

18 59 42 3 57 25 41 36 10 17 27 50
11 43 34 33 52 1 2 9 44 35 26 49
30 5 47 62 45 12 55 38 13 61 31 37
6 29 46 4 23 28 53 22 21 7 63 39

Home-Exercise 3 Find the value of the key K2 when K = 01230123ABABEFEF . Write the
answer in hexadecimal notation.

6

1.3 An example of a DES encryption

We here give an example showing how the encryption proceeds for a fixed key and a fixed plaintext.
We encrypt the plaintext

0000000100100011010001010110011110001001101010111100110111101111

using the key (with parity check bits)

0001001100110100010101110111100110011011101111001101111111110001.

In hexadecimal notation this is written

Plaintext: 0123456789ABCDEF
Key: 133457799BBCDFF1

Applying IP we get L0R0 as

L0R0: CC00CCFFF0AAF0AA

Then 16 rounds of encryption are performed, resulting in the following partial values.

K1: 1B02EFFC7072 K2: 79AED9DBC9E5
E(R0): 7A15557A1555 E(R1): 75EA5430AA09

E(R0) + K0: 6117BA866527 E(R1) + K2: 0C448DEB63EC
f(R0, K1): 234AA9BB f(R1, K2): 3CAB87A3

L1R1: F0AAF0AA - EF4A6544 L2R2: EF4A6544 - CC017709

K3: 55FC8A42CF99 K4: 72ADD6DB351D
E(R2): E58002BAE853 E(R3): 5042F8057FA9

E(R2) + K3: B07C88F827CA E(R3) + K4: 22EF2EDE4AB4
f(R2, K3): 4D166EB0 f(R3, K4): BB23774C

L3R3: C017709 - A25C0BF4 L4R4: A25C0BF4 - 77220045

K5: 7CEC07EB53A8 K6: 63A53E507B2F
E(R4): BAE90400020A E(R5): C5425FD0C1AF

E(R4) + K5: C60503EB51A2 E(R5) + K6: A6E76180BA80
f(R4, K5): 2813ADC3 f(R5, K6): 9E45CD2C

L5R5: 77220045 - 8A4FA637 L6R6: 8A4FA637 - E967CD69

K7: EC84B7F618BC K8: F78A3AC13BFB
E(R6): F52B0FE5AB53 E(R7): 00C2555F40A0

E(R6) + K7: 19AFB813B3EF E(R7) + K8: F7486F9E7B5B
f(R6, K7): 8C051C27 f(R7, K8): 3C0E86F9

L7R7: E967CD69 - 064ABA10 L8R8: 064ABA10 - D5694B90

K9: E0DBEBEDE781 K10: B1F347BA464F
E(R8): 6AAB52A57CA1 E(R9): 1083F960C3F4

E(R8) + K9: 8A70B9489B20 E(R9) + K10: A170BEDA85BB
f(R8, K9): 22367C6A f(R9, K10): 62BC9C22

L9R9: D5694B90 - 247CC67A L10R10: 247CC67A - B7D5D7B2

K11: 215FD3DED386 K12: 7571F59467E9
E(R10): 5AFEABEAFDA5 E(R11): 60ABF01F83F1

E(R10) + K11: 7BA178342E23 E(R11) + K12: 15DA058BE418
f(R10, K11): E104FA02 f(R11, K12): C268CFEA

L11R11: B7D5D7B2 - C5783C78 L12R12: C5783C78 - 75BD1858

K13: 97C5D1FABA41 K14: 5F43B7F2E73A
E(R12): 3ABDFA8F02F0 E(R13): 0F16068AAAF4

E(R12) + K13: AD782B75B8B1 E(R13) + K14: 5055B1784DCE
f(R12, K13): DDBB2922 f(R13, K14): B7318E55

L13R13: 75BD1858 - 18C3155A L14R14: 18C3155A - C28C960D

K15: BF918D3D3F0A K16: CB3D8B0E17F5
E(R14): E054594AC05B E(R15): 206A041A41A8

E(R14) + K15: 5FC5D477FF51 E(R15) + K16: EB578F14565D
f(R14K15): 5B81276E f(R15, K16): C8C04F98

L15R15: C28C960D - 43423234 L16R16: 43423234 - 0A4CD995

Applying IP−1 to the reversed bitstring R16L16 we finally obtain the ciphertext as

7

Ciphertext: 85E813540F0AB405

Lab-Exercise 1 Implement a 16-round DES. Each group is given a pair (Key, Plaintext). En-
crypt the Plaintext with the given Key, and output the corresponding Ciphertext in hexadecimal
notation.

1.4 The controversy of DES

1 When DES was adopted as a standard, there was considerable critisism. One objection concerned
the design of the S-boxes. All computations in DES, with the exception of the S-boxes, are linear,
for example the exclusive-or operation of two inputs, or a permutation of input bits. It is a well
known fact that linear cryptosystems can easily be cryptanalyzed using a known plaintext attack.
Hence, the S-boxes, being the only non-linear component of DES, are vital to its security. But the
design criteria of the S-boxes are not completely known. Several people have suggested that they
might contain trapdoors, i.e., hidden weaknesses that would allow the National Security Agency
to decrypt messages while maintaining that DES is secure. It is of course impossible to disprove
such an assertion, but no evidence has ever appeared that indicates that such trapdoors in DES
do in fact exist.

In 1976 the National Security Agency asserted that some of the design criteria for the S-boxes
was the following: each row of each S-box is a permutation of the integers 1–15; no S-box is a
linear of affine function of it input; changing one input bit to an S-box causes at least two output
bits to change; for any S-box and any input x, S(x) and S(x⊕ 001100) differs in at least two bits.
Other properties of the S-boxes can be found, caused by the design.

The most serious critisism of DES is that the key space, 256, is too small. Many special
purpose machines have been proposed to do a known plaintext attack, which would essentially do
an exhaustive search for the key. Already in 1977, Diffie and Hellman suggested that one could
build a VLSI chip which would test 106 keys per second, and estimated that a machine with 106

chips could find the key in a day and cost $20 000 000.
More recently, in 1993 M. Wiener gave a detailed description of a machine, based on a key

search chip which is pipelined to perform 16 encryptions simultaneously. A machine costing $1
000 000 would require an average search time of about 3.5 hours.

Today, in 2004, DES is considered as broken and is no longer recommended as a standard. In
1998 the organization EFF built a special hardware machine doing keysearch on DES. It costed
less than $250 000 and can find the key in a number of hours. Instead, a new standard has been
developed, called AES (Advanced Encryption Standard).

1.5 DES in the real world

Even though the description of DES is quite lengthy, it can be implemented very efficiently, both
in hardware and software. The only aritmetic operations to be performed are exclusive-ors of
bitstrings. The other functions, the S-boxes, E, IP, P, and the partial keys K1, K2, . . . , K16 can
all be done by table look-up in software, or by hard-wiring them into a circuit.

Recent hardware implementations can attain extremely fast encryption rates. Digital Equip-
ment Corporation announced in 1992 that they have a chip with 50 000 transistors that can
encrypt at the rate of 1 Gbit/second using a clock rate of 250 MHz. The cost of a chip was about
$300.

A very important application of DES is in banking transactions, using standards developed by
the American Bankers Association. DES is used to encrypt personal identification numbers (PINs)
and account transactions carried out by automatic teller machines (ATMs). DES is also used by
the Clearing House Interbank Payment System (CHIPS) to authenticate transactions involving
over $150 000 000 000 per week. DES is also widely used in government organizations, such as
the Department of Energy, the Justice Department and the Federal Reserve System.

It can also be noted that implementations of DES are restricted export merchandise, and may
not be exported outside U.S.A. without permission.

1Nowadays, the information given in these subsections is more historical.

8

2 Linear Cryptanalysis of a 3-round DES

2.1 Background

Differential Cryptanalysis has been one of main topics in cryptology since the first paper by
Biham and Shamir in 1990. They have broken the FEAL cipher in a subsequent paper, and then,
afterwards, succeeded with breaking the full 16-round DES cipher in a chosen-plaintext attack.

2.2 Linear Approximations

In this project we consider a restricted version of DES where the number of rounds is only 3.
Thus, the structure of the “tiny” 3-round DES to be investigated is illustrated in Figure 4.

Figure 4: The structure of a 3-round DES.

For the notation purposes let us denote by X [i1, i2, . . . , in] the XOR-sum of bits xi1 , xi2 , . . . , xin

that belong to the binary vector X , i.e.,

X [i1, i2, . . . , in] =

n
⊕

t=1

xit
.

The purpose of linear cryptanalysis is to find the following “effective” linear expression for a
given cipher algorithm:

P [i1, i2, . . . , ia] ⊕ C[j1, j2, . . . , jb] = K[k1, k2, . . . , kc], (1)

9

where i1, i2, . . . , ia, j1, j2, . . . , jb and k1, k2, . . . , kc denote fixed bit locations, and equation (1) holds
with probability p 6= 1/2 for randomly given plaintext P and the corresponding ciphertext C. The
magnitude of |p−1/2| represents the effectiveness of equation (1). Once we succeed in reaching an
effective linear expression, it is possible to determine one key bit K[k1, k2, . . . , kc] by a likelihood
algorithm (out of scope in this project). We then can define a noise random variable to be:

N = P [i1, i2, . . . , ia] ⊕ C[j1, j2, . . . , jb] ⊕ K[k1, k2, . . . , kc], (2)

which has some bias, i.e. Pr{N = 0} = Pr{Eq. (1) holds} = p 6= 1/2.
How do we find the best linear combination with maximum effectiveness?
In the equation for the noise the triple (P, C, K) is involved, according to equation (2). Note

that in the 3-rounded DES only the f -function is a non-linear part, whereas all the other operations
are linear. So, if we can find the best approximation for (input, output) of the f -function, then
the corresponding approximation involving (P , C, K) of the “tiny” DES will be also the best.

Home-Exercise 4 For the 3-round DES, find the best linear approximation for which the noise
N has maximum bias (|Pr{N = 0} − 0.5| → max).

Hints:

1. The best linear approximation for the f -function (see Figure 3) is found to be:

B[26] = f(Rx, Kx)[3, 8, 14, 25], (3)

i.e., the noise N = B[26]⊕f(Rx, Kx)[3, 8, 14, 25] has the maximum bias and the correspond-
ing probability is Pr{N = 0} ≈ 0.19 (you may also check this by simulation yourself).

2. First find the relation
R1[3, 8, 14, 25]⊕ P [. . .] = K[. . .],

and then
R1[3, 8, 14, 25]⊕ C[. . .] = K[. . .].

The sum of these two equations gives us the required relation.

�

Lab-Exercise 2 For the linear approximation that you have derived in the previous home ex-
ercise 4, find the bias of the noise by simulation. For this purpose, make a sufficient number
(≈ 105) of random selections of the pair (P, K), then calculate the corresponding ciphertext C.
Count the number of times N = 0 and calculate an estimate of Pr{N = 0} (which is the same as
the probability that the derived linear combination holds). Give the bias of the noise in the form
bias(N) = 1/2 ± ε. If everything is done correctly, the bias should be significantly different from
0.5! To check your work, as an intermediate simulation you may test the bias for equation (3)(try
different inputs for the function f , when K is fixed. The bias should be 0.19).

�

10

