Symmetric encryption algorithms are divided into two main categories, *block ciphers and stream ciphers*.

Block ciphers tend to encrypt a block of characters of a plaintext message using a fixed encryption transformation.

A stream cipher encrypts individual characters of the plaintext using an encryption transformation that varies with time.

A stream cipher built around LFSRs and producing one bit output on each clock = *classic stream cipher design.*
A stream cipher

\[z = z_1, z_2, \ldots \] keystream

key \(K \)
A stream cipher

- Design goal is to efficiently produce random-looking sequences that are as “indistinguishable” as possible from truly random sequences.

- Recall the unbreakable Vernam cipher.

- For a synchronous stream cipher, a known-plaintext attack (or chosen-plaintext or chosen-ciphertext) is equivalent to having access to the keystream \(z = z_1, z_2, \ldots, z_N \).

- We assume that an output sequence \(z \) of length \(N \) from the keystream generator is known to Eve.
Type of attacks

- **Key recovery attack**: Eve tries to recover the secret key K.
- **Distinguishing attack**: Eve tries to determine whether a given sequence $z = z_1, z_2, \ldots, z_N$ is likely to have been generated from the considered stream cipher or whether it is just a truly random sequence.

Distinguishing attack is a much weaker attack
Distinguishing attack

Let $D(z)$ be an algorithm that takes as input a length N sequence z and as output gives either “X” or “RANDOM”.

With probability $1/2$ the sequence z is produced by generator X and with probability $1/2$ it is a purely random sequence.

The probability that $D(z)$ correctly determines the origin of z is written $1/2 + \epsilon$.

If ϵ is not very close to zero we say that $D(z)$ is a distinguisher for generator X.

T. Johansson (Lund University)
Distinguishing attack - example

Assume that Alice sends one of \(N \) public images \(\{I_1, I_2, \ldots, I_N\} \) to Bob. Eve observes the ciphertext \(c \).

- Guess that the plaintext is the image \(I_1 \), i.e., \(m = I_1 \).
- Calculate \(\hat{z} = m + c \) and compute \(D(\hat{z}) \).
- If the guess \(m = I_1 \) was correct then \(D(\hat{z}) = X \). If not, \(D(\hat{z}) = \text{"RANDOM"} \).
More on attacks

- Building a (synchronous) stream cipher reduces to the problem of building a generator that is resistant to all distinguishing attacks.
- There are essentially always both distinguishing attacks and key recovery attacks on a cipher.
- *Exhaustive keysearch*; complexity 2^k
- An attack is considered successful only if the complexity of performing it is considerably lower than 2^k key tests.
MEMORY

- linear feedback shift registers, or LFSRs for short.
- tables (arrays)

Combinatorial function

- Nonlinear Boolean functions, S-boxes
- XOR, Modular addition, (cyclic) rotations, (multiplications)
Example of a stream cipher design

\[s_j^{(1)} \]
\[s_j^{(2)} \]
\[s_j^{(n)} \]

\[f \]

\[z_i \]
A register of L delay (storage) elements each capable of storing one element from \mathbb{F}_q, and a clock signal.

Clocking, the register of delay elements is shifted one step and the new value of the last delay element is calculated as a linear function of the content of the register.
LFSR sequences

- The linear function is described through the coefficients $c_1, c_2, \ldots, c_L \in \mathbb{F}_q$ and the recurrence relation is

$$s_j = -c_1s_{j-1} - c_2s_{j-2} - \cdots - c_Ls_{j-L},$$

for $j = L, L + 1, \ldots$.

- With $c_0 = 1$ we can write

$$\sum_{i=0}^{L} c_is_{j-i} = 0, \text{ for } j = L, L + 1, \ldots.$$

The *shift register equation*.

- The first L symbols $s_0, s_1, \ldots, s_{L-1}$ form the *initial state*.
The coefficients c_0, c_1, \ldots, c_L are summarized in the connection polynomial $C(D)$ defined by

$$C(D) = 1 + c_1 D + c_2 D^2 + \cdots + c_L D^L.$$

Write $< C(D), L >$ to denote the LFSR with connection polynomial $C(D)$ and length L.

D-transform of a sequence $s = s_0, s_1, s_2, \ldots$ as

$$S(D) = s_0 + s_1 D + s_2 D^2 + \cdots,$$

assuming $s_i \in \mathbb{F}_q$.

The indeterminate D is the "delay" and its exponent indicate time.
LFSR sequences

We assume $s_i = 0$ for $i < 0$. The set of all such sequences having the form

$$f(D) = \sum_{i=0}^{\infty} f_i D^i,$$

$f_i \in \mathbb{F}_q$, is denoted $\mathbb{F}_q[[D]]$ and called the ring of formal power series.
The set of sequences generated by the LFSR with connection polynomial $C(D)$ is the set of sequences that have D-transform

$$S(D) = \frac{P(D)}{C(D)},$$

where $P(D)$ is an arbitrary polynomial of degree at most $L - 1$,

$$P(D) = p_0 + p_1 D + \ldots + p_{L-1} D^{L-1}.$$

Furthermore, the relation between the initial state of the LFSR and the $P(D)$ polynomial is given by the linear relation

$$\begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_{L-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ c_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ c_{L-1} & c_{L-2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{L-1} \end{pmatrix}.$$
Let $\pi(x)$ be an irreducible polynomial over \mathbb{F}_q and assume that its coefficients are

$$\pi(x) = x^L + c_1 x^{L-1} + \cdots + c_L.$$

This means that $\pi(x)$ is the *reciprocal* polynomial of $C(D)$.

Construct the extension field \mathbb{F}_{q^L} through $\pi(\alpha) = 0$.

β from \mathbb{F}_{q^L} can be expressed in a polynomial basis as

$$\beta = \beta_0 + \beta_1 \alpha + \cdots + \beta_{L-1} \alpha^{L-1},$$

where $\beta_0, \beta_1, \ldots, \beta_{L-1} \in \mathbb{F}_q$.
LFSR sequences and extension fields

Assume that the (unknown) element β is multiplied by the fixed element α. The result is

$$\alpha \beta = \beta_0 \alpha + \beta_1 \alpha^2 + \cdots + \beta_{L-1} \alpha^L.$$

Reducing α^L using $\pi(\alpha) = 0$ gives

$$\alpha \beta = -c_L \beta_{L-1} + (\beta_0 - c_{L-1} \beta_{L-1}) \alpha + \cdots + (\beta_{L-2} - c_1 \beta_{L-1}) \alpha^{L-1}.$$
It is quickly checked that

\[s_j = -c_1 s_{j-1} - c_2 s_{j-2} - \cdots - c_L s_{j-L}, \]

when \(j \geq L \).

- \(p_0 = s_0, p_1 = s_1 + c_1 s_0 \), etc, where \(p_0, p_1, \ldots, p_{L-1} \) is the initial state.
- The sequence fulfills the shift register equation, but uses \(p_0, p_1, \ldots, p_{L-1} \) as initial state.
The set of LFSR sequences, when $C(D)$ is irreducible, is exactly the set of sequences possible to produce by the implementation of multiplication of an element β by the fixed element α in \mathbb{F}_{q^L}.

For a specific sequence specified as $S(D) = P(D)/C(D)$ the initial state is the first L symbols whereas the same sequence is produced in the figure if the initial state is $p_0, p_1, \ldots, p_{L-1}$.
A sequence \(s = \ldots, s_0, s_1, \ldots \) is called *periodic* if there is a positive integer \(T \) such that \(s_i = s_{i+T} \), for all \(i \geq 0 \).

The *period* is the least such positive integer \(T \) for which \(s_i = s_{i+T} \), for all \(i \geq 0 \).

The LFSR state runs through different values. The initial state will appear again after visiting a number of states. If \(\deg C(D) = L \), the period of a sequence is the same as the number of different states visited, before returning to the initial state.
Properties of LFSR sequences

- $C(D)$ irreducible: the state corresponds to an element in \mathbb{F}_{q^L}, say β.
- The sequence of different states that we are entering is then

$$\beta, \alpha \beta, \alpha^2 \beta, \ldots, \alpha^{T-1} \beta, \alpha^T \beta = \beta,$$

where T is the order or α.
- If α is a primitive element (its order is $q^L - 1$), then obviously we will go through all $q^L - 1$ different states and the sequence will have period $q^L - 1$. Such sequences are called m-sequences and they appear if and only if the polynomial $\pi(x)$ is a primitive polynomial.
Example

- Length 4 LFSR with connection polynomial
 \[C(D) = 1 + D + D^2 + D^3 + D^4 \] in \(\mathbb{F}_2 \).
- Starting in (0001), we return after 5 clockings of the LFSR.
- There are three cycles of length 5 and one of length one.
- Explanation: \(\mathbb{F}_{2^4} \), we get through
 \[\pi(x) = x^L C(x^{-1}) = x^4 + x^3 + x^2 + x + 1 \] and \(\pi(\alpha) = 0 \).
- \(\alpha^5 = 1 \) and \(\text{ord}(\alpha) = 5 \). So starting in any nonzero state \(\beta \in \mathbb{F}_{2^4} \), we will jump between the states
 \[\beta, \alpha \beta, \alpha^2 \beta, \alpha^3 \beta, \alpha^4 \beta, \alpha^5 \beta = \beta. \]
Example

- Length 4 LFSR with connection polynomial $C(D) = 1 + D + D^4$ in \mathbb{F}_2.
- Starting in (0001), we return after 15 clockings of the LFSR.
- Explanation: \mathbb{F}_{2^4}, we get through $\pi(x) = x^L C(x^{-1}) = x^4 + x^3 + 1$ and $\pi(\alpha) = 0$.
- $\alpha^{15} = 1$ and $\text{ord}(\alpha) = 15$. $\pi(x)$ primitive polynomial.
- So starting in any nonzero state $\beta \in \mathbb{F}_{2^4}$, we will jump between all nonzero states before returning.
Properties of LFSR sequences

The different state cycles that will appear for an arbitrary LFSR.

- \([s_0, s_1, \ldots, s_{T-1}]^\infty\) denote the periodic and causal sequence

\[
s_0, s_1, \ldots, s_{T-1}, s_0, s_1, \ldots, s_{T-1}, s_0, \ldots,
\]

where \(s_i \in \mathbb{F}_q, i = 0, 1, \ldots, T - 1.\)

- \((s_0, s_1, \ldots, s_{N-1})\) denote a sequence where the first \(N\) symbols are \(s_0, s_1, \ldots, s_{N-1}\) (and the upcoming symbols are not defined), where \(s_i \in \mathbb{F}_q, i = 0, 1, \ldots, N - 1.\)
Properties of LFSR sequences

- If \(s = [1, 0, 0, \ldots, 0]^{\infty} \) then
 \[
 S(D) = 1 + D^T + D^{2T} + \cdots = \frac{1}{1 - D^T}.
 \]

- If \(s = [0, 1, 0, \ldots, 0]^{\infty} \) then
 \[
 S(D) = D + D^{T+1} + D^{2T+1} + \cdots = \frac{D}{1 - D^T}.
 \]

- In general, if \(s = [s_0, s_1, \ldots, s_{T-1}]^{\infty} \) then
 \[
 S(D) = \frac{s_0}{1 - D^T} + \frac{s_1 D}{1 - D^T} + \cdots = \frac{s_0 + s_1 D + s_2 D^2 + \cdots + s_{T-1} D^{T-1}}{1 - D^T}.
 \] (1)
Properties of LFSR sequences

Definition

The period of a polynomial $C(D)$ is the least positive number T such that $C(D)| (1 - D^T)$.

- Calculated by division of 1 by $C(D)$ and continuing until the we receive the first remainder of the form $1 \cdot D^N$. Then the period is $T = N$.

(example)
Properties of LFSR sequences

Theorem

If \(\gcd(C(D), P(D)) = 1 \) then the connection polynomial \(C(D) \) and the sequence \(s \) with \(D \)-transform

\[
S(D) = \frac{P(D)}{C(D)}
\]

have the same period (the period of \(s \) is the same as the period of the polynomial \(C(D) \)).

- Note: This \(C(D) \) gives the shortest LFSR generating \(s \). Any other connection polynomial generating \(s \) must be a multiple of \(C(D) \).

(example)
Properties of LFSR sequences

Theorem

If two sequences, \(s_A \) and \(s_B \), with periods \(T_A \) and \(T_B \) have D-transforms

\[
S_A(D) = \frac{P_A(D)}{C_A(D)}, \quad S_B(D) = \frac{P_B(D)}{C_B(D)},
\]

then the sum of the sequences \(s = s_A + s_B \) has D-transform

\[
S(D) = S_A(D) + S_B(D) \quad \text{and period} \quad \lcm(T_A, T_B), \quad \text{assuming}
\]

\[
\gcd(P_A(D), C_A(D)) = 1, \quad \gcd(P_B(D), C_B(D)) = 1, \quad \gcd(C_A(D), C_B(D)) = 1.
\]

(example)
Introduce the cycle set for $C(D)$ (assuming $L = \deg C(D)$).

Written in the form $n_1(T_1) \oplus n_2(T_2) \oplus \ldots$.

$1(1) \oplus 3(5)$, one cycle of length one and three cycles of length 5.

$n_1(T) \oplus n_2(T) = (n_1 + n_2)(T)$.
Already established facts:

- If $C(D)$ is a primitive polynomial of degree L over \mathbb{F}_q, then the cycle set is
 $$1(1) \oplus (1)(q^L - 1).$$

- If $C(D)$ is an irreducible polynomial, then the cycle set is
 $$1(1) \oplus \frac{(q^L - 1)}{T}(T),$$
 where T is the period of the polynomial $C(D)$ (or the order of α when $\pi(\alpha) = 0$).
If $C(D) = C_1(D)^n$ then the cycle set of $C(D)$ is

$$1(1) \oplus \frac{(q^{L_1} - 1)}{T_1}(T_1) \oplus \frac{q^{L_1}(q^{L_1} - 1)}{T_2}(T_2) \oplus \ldots \frac{q^{(n-1)L_1}(q^{L_1} - 1)}{T_n}(T_n),$$

where $\deg C(D) = L$ and T_j is the period of the polynomial $C_1(D)^j$.

If $C_1(D)$ is irreducible with period T_1, then the period of the polynomial $C_1(D)^j$ is $T_j = p^mT_1$ where p is the characteristic of the field and m the integer satisfying $p^{m-1} < j \leq p^m$. (example)
LFSR cycle sets - remaining cases

Theorem

For a connection polynomial \(C(D) \) factoring like

\[
C(D) = C_1(D)^{n_1} C_2(D)^{n_2} \cdots C_m(D)^{n_m},
\]

\(C_i(D) \) irreducible, has cycle set \(S_1 \times S_2 \times \cdots S_m \), where \(S_i \) is the cycle set for \(C_i^{n_i} \), and

\[
(n_1)T_1 \times (n_2)(T_2) = (n_1 n_2 \cdot \gcd(T_1, T_2)(\text{lcm}(T_1, T_2))
\]

and the distributive law holds for \(\times \) and \(\oplus \).

(example)
Decimation

An \(m \)-sequence \(s = s_0, s_1, s_2, \ldots \)

- Define the sequence \(s' \) obtained through *decimation* by \(k \), defined as the sequence
 \[
 s' = s_0, s_k, s_{2k}, s_{3k}, \ldots .
 \]

- \(s \) correspond to multiplication of \(\beta \) by the fixed element \(\alpha \). It is clear that \(s' \) corresponds to multiplication of \(\beta \) by the fixed element \(\alpha^k \), i.e, the cycle of different states correspond to the sequence
 \[
 \beta, \alpha^k \beta, \alpha^{2k} \beta, \ldots , \alpha^{(T-1)k} \beta, \alpha^{Tk} \beta = \beta.
 \]

- the period of \(s' \) is \(\text{ord}(\alpha^k) \) and \(\text{ord}(\alpha^k) = q^L - 1 / \gcd(q^L - 1, k) \).
Decimation - advanced

\(\mathbb{F}_{q^L} \) through a degree \(L \) polynomial \(\pi(x) \in \mathbb{F}_q[x] \) with \(\pi(\alpha) = 0 \).

- Let \(\beta \in \mathbb{F}_q \) and consider the set of polynomials

 \[
 \mathcal{F}(\beta) = \{ f(x) \in \mathbb{F}_q[x] : f(\beta) = 0 \}.
 \]

- The set will contain at least one polynomial of degree \(\leq L \).

- Let \(f_0(x) \) be the polynomial in \(\mathcal{F}(\beta) \) of lowest degree. Any other polynomial \(f(x) \) in \(\mathcal{F}(\beta) \) can be written as \(f(x) = q(x)f_0(x) + r(x) \), \(\deg r(x) < \deg f_0(x) \) and

 \[
 0 = f(\beta) = q(\beta)f_0(\beta) + r(\beta) = r(\beta).
 \]

- So \(r(\beta) = 0 \) and this means that \(f_0(x) \mid f(x) \) for all polynomials \(f(x) \) in \(\mathcal{F}(\beta) \).
The polynomial $f_0(x)$ is called the *minimal polynomial* of the element β.

The minimal polynomial to β, now denoted $\pi_\beta(x)$, can be calculated as

$$\pi_\beta(x) = (x - \beta)(x - \beta^q)(x - \beta^{q^2}) \cdots (x - \beta^{q^{d-1}}),$$

where d is the smallest integer such that $q^d \equiv 1 \mod \text{ord}(\beta)$ (d is the number of conjugates of β).
The reciprocal of the minimal polynomial $\pi_\beta(x)$ gives the connection polynomial for a minimal LFSR producing a sequence corresponding to the state sequence

$$\beta, \alpha^k \beta, \alpha^{2k} \beta, \ldots, \alpha^{(T-1)k} \beta, \alpha^{Tk} \beta = \beta.$$

The decimated sequence s' can be generated by an LFSR with a connection polynomial being the reciprocal of $\pi_{\alpha^k}(x)$.

(example)
Statistical properties of LFSR sequences

The importance of LFSR sequences in general and m-sequences in particular is due to their pseudo randomness properties.

- $s = s_0, s_1, \ldots$ is an m-sequence, recall that an r-gram is a subsequence of length r,

$$ (s_t, s_{t+1}, \ldots, s_{t+r-1}), $$

for $t = 0, 1, \ldots$

Theorem

Among the $q^L - 1$ L-grams that can be constructed for $t = 0, 1, \ldots, q^L - 2$, every nonzero vector appears exactly once.
Run-distribution properties of m-sequences.

- A run of length r in a sequence s is a subsequence of exactly r zeros (or ones). This means that the r zeros must have a one before.
Statistical properties of LFSR sequences

Theorem

The run distribution of any m-sequence of length $2^L - 1$ is given as

<table>
<thead>
<tr>
<th>length</th>
<th>0-runs</th>
<th>1-runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2^{L-3}</td>
<td>2^{L-3}</td>
</tr>
<tr>
<td>2</td>
<td>2^{L-4}</td>
<td>2^{L-4}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$L-2$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$L-1$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>2^{L-2}</td>
<td>2^{L-2}</td>
</tr>
</tbody>
</table>
The autocorrelation function.

- Let \(x, y \) be two binary sequences of the same length \(n \).
- The correlation \(C(x, y) \) between the two sequences is defined as the number of positions of agreements minus the number of disagreements.
- The autocorrelation function \(C(\tau) \) is defined to be the correlation between a sequence \(x \) and its \(\tau \)th cyclic shift, i.e.,

\[
C(\tau) = \sum_{i=1}^{n} (-1)^{x_i + x_{i+\tau}},
\]

where subscripts are taken modulo \(n \) and addition in the exponent is mod 2 addition.
Theorem

If s is an m-sequence of length $2^L - 1$, then

$$C(\tau) = \begin{cases} 2^L - 1 & \text{if } \tau \equiv 0 \pmod{n} \\ -1 & \text{otherwise} \end{cases}$$
The decimation of an \(m \)-sequence or the sum of two different \(m \)-sequences are (under some assumptions) again \(m \)-sequences.

One property is completely away from random sequences. Let the binary \(m \)-sequence be generated by the recursion \(s_j = \sum_{i=1}^{L} c_i s_{j-i} \). By forming a set of random variables \(X_j = \sum_{i=0}^{L} c_i s_{j-i}, j \leq L \) we see that \(P(X_j = 0) = 1 \). An extreme point of nonrandomness.